
Distributed by:

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

AC CHARACTERISTICS TIMING (Continued)

Z8D is a registered trademark of Zilog, Inc.

Copyright 1986 by Zilog, Inc. All rights reserved. Specifications (parameters) on products delivered in the future ere subject to change without notice. All parameters ere tested, except those which are characterized or gueranteed by design.

Zilog, Inc. 1315 Dell Ave., Campbell, California 95008 Telephone (408)370-8000 TWX 910-338-7621

Zilog

Z08470 Customer Procurement Spec (CPS)

GENERAL DESCRIPTION

The Z80 DART (Dual-Channel Asynchronous Receiver/ Transmitter) is a dual-channel multifunction peripheral component that satisfies a wide variety of asynchronous serial data communications requirements in microcomputer systems. The Z80 DART is used as a serial-to-parallel. parallel-to-serial converter/controller in asynchronous applications. In addition, the device also provides modern controls for both channels. In applications where modern controls are not needed, these lines can be used for general-purpose I/O.

40-Pin Dual-in-Line Package (DIP), Pin Assignments

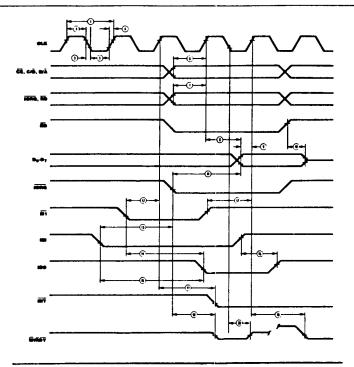
DC CHARACTERISTICS

Symbol	Parameter		Marie .	Unit	Tool Condition
Vac	Clack Imput Law Voltage	-0.3*	+0.45*	٧	
Vec	Clock Input High Voltage	VDC-0.6*	+5.54	٧	
V _R	Input Low Voltage	-0.3*	+0.8*	٧	
Var	Input High Voltage	+2.0*	+ 5.5°	٧	
Vos.	Output Low Voltage		+0.44	٧	los = 20mA
VOH	Output High Voltage	+2.4*		٧	IOH = -250 pA
4	Input/3-State Output Lealings Current	- 10*	+ 10*	pa A	0.4 < Voy < 2.4V
in.	Fit Pin Leshage Current	-40*	+ 10*	ppA.	0.4 < V _{IN} < 2.4V
CC.	Power Supply Current		. 100°	mA	

T_A = 0°C to 70°C, V_{CC} = +5V, ±9%.

a Tested
b Gueranteed by Design
c Gueranteed by Characterization

AC CHARACTERISTICS*


Number	Symbol	Parameter	280-4 Min	DART Max	280-6 Min	DART Mess
1	ToC	Clock Cycle Time	250*	4000 °	165 *	4000
2	TeCh	Clock Width (High)	106*	2000 °	70 *	2000
3	TIC	Clock Fell Time		30 °		15
4	TC	Clock Rise Time		30 *		15
5	TwO	Clock Width (Low)	105 °	2000°	70°	2000
	TeAD(C)	CE, C/D, B/Ā to Clock † Satup Time	145*		60*	
7	TeCS(C)	IORO, RD to Clock 1 Setup Time	1150		60*	
	TdC(DO)	Clock 1 to Data Out Dalay		220 °		150
	TsD(C)	Date in to Clock & Setup (Write or M1 Cycle)	50 *		30 *	
10	TdRD(DOz)	RD 1 to Data Out Ploat Dalay		110°		901
11	TalO(DOI)	IORO I to Date Out Datey (INTACK Cycle)		160°		1001
12	TsM1(C)	M1 to Clock 1 Setup Time	90 *		75 ●	
13	TelEI(IO)	IEI to IORQ 4 Setup Time (INTACK Cycle)	140 °		120 °	
14	TdM1(IEO)	MT 4 to IEO 4 Daley (interrupt before M1)		190 °		160
15	Talel(IEOr)	IEI 1 to IEO 1 Daley (after ED decode)		100 €		70
16	Talei(IEOI)	ÆI ∔ to ÆO ∔ Dalay		100 *		701
17	TdC(INT)	Clock 1 to INT # Daley		200 *		150
18	TalO(W/RWI)	IORG I or CE I to W/RDY IDelay (Mat Mode)		210¢		175
19	TdC(W/RR)	Clack 1 to W/RDY I Datey (Ready Mode)		120 *		100
20	TdC(W/RWz)	Clock I to W/RDY Float Datey (Wart Mode)		130°		110

*Units in rendesconds (ris).

a Tested

b Guaranteed by Design

c Sucrenteed by Characterization

AC CHARACTERISTICS (Commund)

Number		Parameter	18D-4	DART	280-	6 DART	
	Symbol		Min	Mex	Min	Mex	Notes*
1	TwPh	Pulse Width (High)	200°		200¢		2
2	TwPI	Pulse Width (Low)	200 €		200¢		2
3	TcTxC	TrC Cycle Time	400°	c	330¢	- c	2
4	Twitci	TrC Width (Low)	180°	-c	100 ¢	∞ ¢	2
5	Tw/brCh	TicC Width (High)	180°	æ¢.	100¢	- c	2
6	Tellic(TxD)	TirC ∔ to TirD Delay		300 *		220°	2
7	Tdbc(W/RRI)	SiC ∔ to W/RDY ∔ Delay (Ready Mode)	5 0	9 c	5 c	9 c	1
8	TdTkC(INT)	ScC + to fNT + Delay	5 e	9 c	50	90	1
	ToRxC	RxC Cycle Time	400 ¢	⇔ ¢	330¢	- c	2
10	TerRisCI	FixC Width (Low)	180°	-c	100 °	e c	2
11	TwRxCh	Ric Width (High)	180°	-c	100°	es c	2
12	TeRxD(RxC)	RidD to RidC 1 Setup Time (x1 Mode)	0¢		0 c		2
13	ThRxD(RxC)	RxD Hold Time (x1 Mode)	140¢		100 °		2
14	TdRxC(W/RRI)	RxC 1 to W/RDY & Delay (Ready Mode)	10°	13¢	10 °	13¢	1
15	TdRxC(INT)	RicC t to RT ∔ Delay	10°	13 C	10°	13¢	1

^{*} In all modes, the System Clock rate must be at least five times the maximum data rate RESET must be active a minimum of one complete clock cycle
1. Units equal to System Clock Periods.
2. Units in hancesconds (ns).

. Tested

b Guarenteed by Design c Guarenteed by Characterization