For the Advanced Computer User

Micro/Systems Journal.

“h-!' .

1
|

am

see pages 22-27

Also in this Issue

/ Greating A Copy Protected Program 28
/ Build A Smart Keyhoard Interface, KL
7 Program Interfacing ToMS-DOS iinn... hd
Dec are & Nefine C Variahlesin OneFile £5
Pore Loadahle BI10S Drivers For CP/M oot i

Complete Table of Contents on Page 3

July/August 1986 Vol.2/No.4 ﬁf‘s-i“_

Build A Smart
Kevboard Interface

by John Monahan

Ever wished your keyboard had more
keys or all your programs used the same
control codes for cursor movements and
editing funetiong?

This has always been my problem!
Recently I decided to do something about
it. After all, if 1 have my own personal
computer, | should be able to have it do the
things I want to do. I happen to have an
S-100 system with 280 and 8086 CPU’s,
andsince I use an IBM-PC compatible key-
board and run MS-DGOS, I wanted to run
MS-DOS software that looks for an IBM
keyboard.

My approach, which can be added to
many other types of systems, is to have
the keyboard talk to a keyboard controller
which in turn talks to the computer. By
having intelligence between a dumb key-
board and the computer, a truly powerful
system can be set up, because the con-
troller does not take up CPU space; it is
always present, even on power up, works
with different operating systems, and, as
we shall see, can be much more powerful
than its software counterpart.

THE CIRCUIT

To have any kind of flexibility, one
must put together a unit containing an 8-bit
microprocessor, a few [/O ports, as well
as RAM and ROM memory. There are a
number of very good single-chip, 8-bit
microprocessors that have these features.
The Intel 8048 is a classic example. How-
ever, in order to put something together
quickly in hardware and to program it with
an assembiler 1 already had, T used the pop-
ular ZBO. It requires few parts to assemble
a very powerful system. A Z80 CPU with a
2716 ROM, 2Kx8 RAM, and two Zilog
PIO’s, together with a few small “glue”
chips are all we need to construct a compu-
ter with 4 parallel ports with handshaking.
Figure 1 shows the complete computer.

Because Z8(Q output pins are TTL
compatible and capable of driving one TTL
load, no buffers are required on the ad-
dress, data or control lines. The 11 lines
needed to address the 2716 ROM and 2Kx8
RAM chips can be connected directly to the
Z80. These correspond to address lines
AQ to Al0. Address line All selects the

M

Add Intelligence
To Your Keyboard
Input

memory in the ROM (All = 0) or RAM
(A1 = 1}. Pin 20 is the critical pin for
selecting the 2716 ROM. Whenever this
(CS*) pin is low, the ROM places data on
output pins: 9, 10, 11, 13, 14, 15, 16, and
17. These are then read by the data-bus
pins of the Z80 when the ZBO brings
MEMR*,RD*, and All low. Any write-
to-RAM-memory or R/W-to-an-I/Q port
will not cause the 2716 CS* to go low and
so will not cause it to place data on the data
bus.

The operation of the 2K RAM chip is a
bit more complicated. We have two possi-
bilities. First a read from the memory; Pin
21 (WE*) should be high. No problem here
since it is connected to the Z80 WR* line.
Pin 20 (OE*)} of the RAM chip is connected
to the Z80 RD* line. When this is low,
along with the Z80 MREQ* and a high Z80
All line, the 2K RAM places the selected
data (determined by address lines AQ -
A10) on the data bus to be read by the Z80.
For a write to RAM, memory-pin 20 (OE¥)
ofthe RAM must be held high. Pin 21
(WE*) is brought low by the Z80 WR*
line. The CE* is selected as described
above for the read cycle.

Because we are using only 8, of the
possible 256 1/O ports available on the
ZB0, we do not have to decode the address
lines completely to address the two Zilog
PIO’s. The PIO's are Zilogs' answer to
the Inte] 8255. They are 40-pin LSI chips
that contain 2 separate 8-bit parallel ports
with handshaking. They may be pro-
grammmed in a number of configurations.
More on this Jater.

The PIO’s have a unigue built-in capa-
bility to interrupt the Z80 in an ordered
manner. We will not be using this
characteristic of the PIO, however this

|

requires that the Z80 clock and M1 pins to
be directly connected (see Figure [),

Each PIO is selected by bringing pin 4
(CS*) low. We do this on PIO1 and PIO2
by lowering address lines A2 and A3,
respectively. Because each PIO contains 4
ports, we use address lines AO and Al to
select these. Pin 5 of the PIO selects the
command or data port. Pin 6 selects either
port A or B on the chip. Address lines AD
to A3 will always be changing as the CPU
reads memory, however, only when the
IORQ* line goes low, will the PIO be ad-
dressed. This only happens when the Z80
code forces the CPU to read or write to a
port.
The ZBO requires an external clock
signal. Anything from 2 to 4Mhz is fine for
this application. This is provided by the
simple oscillator circuit connected to pin 6
of the Z80. Note thata 600€) pullup resistor
is required, since Zilog specifies the
voltage swing must be within 0 to 5 volts.

CHECK OUT

So far we have assembled the bare
essentials of a computer. With the appro-
priate software in ROM, the Z80, after
power up, can be made to look at one data
port and transfer the data across to another
port. Complicated character translations
can be done by adding on software as de-
scribed below. If this is the first time vou
have put together a system of this com-
plexity, you may first want to try some-
thing simplier first: namely fill a 2716
ROM with 76h’s (the Z80 HALT instruc-
tion), switch on the power, and check that
pin 18 of the Z80 has gone low, indicating
the CPU has gone into the halt state. If this
does not happen, more than likely you have
one of your address or data lines connected
incorrectly,

INTERFACING TO THE KEYBOARD
Connecting the Z80 board to an IBM-
like keyboard entails one complication.
The keyboard sends the data serially over
two wires. One contains the data as 8-bits,
the second, the keyboard clock data
associated with the data. It would have
been nice if IBM had chosen te use a stan-
dard UART-compatible, serial-data

Micro/SysTEMs JOURNAL JuLy/AuGusT 1986

+SV Z’Opr
26 —' cv ""“ l
q e
i — Ipo L” msu-
1} D7 §
n [f
— ,‘” o2 z I
| 1 N
B .. L _pe RESET ¢ Jormane
el P
L] i WML . §-00 RESET
—1Tor D7
PIO
=& ot L I .l = S Y
o < STROBE
a1 268 |_ 1 == s
©laz L L) —esB Aoy |18 s £ » DATA
=
53 | 3| ‘ oy Q—T STRORE
—ls 2 bo}—— — — S-S I
— ! 3 o — > | TO COMPUTER
—_— e D2t — - >
I L2 | wor PoAT| pY}— . —>
L, B o puseg A | O _ T4
2 le ke — - B 0
: s Ds— — ‘
12{ A e, B | Do — - - ‘
e 2 v H - L’, I_D777 — == J
1 ey
L oy | o }—=2 At’
i | L0 l . 128, | 7 —2 spE— 1 — —< DATA
L g 1 5;; D2 —;:; 14.5/6% WPUT
)\\ 1 = apar | ®3 L FROM
f \ B Daf & THISIIS KEYBOARD
i DS 2 cix LT @ Df—< CLocK
B I [
2 Dé— I c
— 1 ' o7 E) e
. EART =
— ‘cLoﬂa UR ¢ =
- m WD\' RessT
?'4&5!6" ohd cik >
— A
FRE 5|
50

format. No such hick. The data is sent as
8-bits with no start bits or stop bits (Figure
2).

While jt would be possible to program
the Z80 to monitor one bit of an I/Q port to
assemble a byte from the serial data, the
hardware solution of using two 8-bit shift
registers makes life so simple that [opted
for the easy way out. Here is how it works.
Eight serial clock bits are shifted into
the LS164-A-register (Figure 1) trom the
raw clock line coming from the key-
board. At the same time, 8 data bifs are
shifted into position in the LS164-B-
register. Pins 3,4, 5,6, 10, 11, 12, and 13
of this chip will end up with the data in
paratlel form. The rising edge of the final
clock bit raises pin 13 of the
LS164-A-register. This, via the LS04 in-
verter, causes the INT* input to the Z80 to
go low. This in turn causes the Z8O to call
on an interrupt in ROM, which will pulse
address line AlS high, clearing the two
LS164 shift registers and readying them
for the next byte from the keyboard, The
raising of A15 is a cheap way of getting a
fast]-bit output port. Since our computer
has no memory above 4K, we do not have
to worry about the value of the high-order
address lines. Writing a byte to address
FOOOh in RAM will raise and lower A15
with no damage to RAM contents in low
memory. The L5175 dual flip-flops (IC A)
aligns the clock information with the data
from the keyboard.

We are almost there, hardware-wise!
All that remains to be done is to have the
Z80 process the data and pass it on to the
main computer. On my system, the key-

Micro/SysTeMs JOURNAL JuLy/Aucust 1986

Figure 1. Keyboard controiter circuitry

board input is from a SD Systems 8024
Video board, This board requires a key-
board with a paralle! port. The data must be
strobed into this port by a positive-going
pulse. 1 have modified this board slightly
so that once data is read from this port, a
negative-going pulse is sent back to the
smart keyboard interface letting it know the
data has been read. Other boards may have
different strobe protocols. These can often
simply be accommodated by one or two
741804 inverters in the circuit. For those
computer systems that have a senal key-
board, you could replace one of the PIO’s
with a Zilog SIO. This is a simple hard-
ware replacement, but you should carefully
study the software setup procedure to talk
to the SI1O.

Pin 26 of the Z80 (reset) is connected
to the main-computer reset line. In this
way, a Teset to the main computer also
resets the smart keyboard circuit. Any
keyboard characters in a queue or taken
through a translation table are flushed out
in this process. The NMI* pin of the Z80
is connected to a one-bit output port of the
main computer. The function of this will
become clear when we discuss the soft-
ware used to drive this board. Other pins
of the 780 are left either unconnected or tied
high via a JK resistor.

SOFTWARE

Writing software for a computer like
this is a lot of fun. Because you have com-
plete control of the smart-keyboard inter-
face Z80 at all times, you can place values
in certain registers and know they are
always going to be there. We can, for ex-

ample, really make use of the Z80 alternate
registers. The software I used to program
this board has been submitted to the
public-domain SIG/M users group and will
be available in one of their future releases.
What I would like to do, is step you
through the main points. The complete
details for all routines can be found in the
public-domain code itself. The first two
lines of code start off:

ORG
1D

00"
SP,STACK

Since the ZBO reads an opcode from
memory location 0, at power on or a reset,
the ROM code must originate here. First
we need a valid location for the stack. Tobe
on the safe side, we will put the stack high
up in RAM, but just below certain reserved
RAM memory locations. | have used
STACK = 0OFFCh.

Next we initialize the Zilog PIQ’s. The
2 PIO’s have 4 ports which can be con-
figured in software as input, output, or
bidirectional. Consult the Zilog technical
literature for a detailed explanation of what
this entails. We will set up both PIO port
A’s as output ports (MODE 0) and port
B's as input ports (MODEL).

The PIO's also have the capability of
generating an interrupt under certain data-
transfer conditions. We do not need this
here and so we must program the chips to
disable this function.

Programming the chip is e¢asy. You
select the appropriate PIO control port (data
port+1 in this example} and send two
bytes of code. Since we have 4 ports in all,
we must send 2 bytes to each of 4 ports.

On Rising Edge Of

Ninth Pulse All)
Data Has Been Sent 38 [3C 25
]3| |32.5L BB | BC o7
Keyboard usec[~ ~Jusec 30| 3E 49 [4A
e — | B i CA
Clock Line { []([f { [Mar [40 0] A&
L__T : :LA% ~147 ; f1_4 | BF | CO CD| CE
W3 ! ‘ L] T 41] 42 1
: } H ! H ' H Voo cl]c2 Di| 1C
Keyboard H : J [T ; 43| 44 53 |oc
e anar L] o ¥ [~ lake o
(example code AA)
g1 0 1 0 1 8 1
LS8 MsB

Figure 2. Timing diagram of serial data sent
from a Keytronics IBM-compalible keyboard.

This is done as shown in Listing 1.

Having set-up the PIO’s, it is a good
practice to clear them of any false data they
may have acquired before or during in-
itialization. We do this by:

N &, (DATASB)
m a, (DATASC)

Next we have to enable the Z80 in the
correct interrupt mode. Again you should
consult the Zilog literature if you do not
understand how this is done. In our case
we need interrupt mode 1. This will caase
the CPU to jump to location 38H in oar
ROM anytime the INT* {pin 16) on the Z80
is pulled low. At that location will be the
code that will get data from the PIO port and
process it. An INT will occur only when
the hardware has received 8 serial bifs of
data from the keyboard (the [ow at pins 1 &
2 of the 74L.S174-B have been shifted 8
times). The code at 38H is shown in List-
ing 2.

What we are doing here, is quickly
taking the data byte at the keyboard and
placing it in a cyclic 256-byte buffer in
RAM memory. We do not know when such
an INT would occur and so cannot count on
what is in the “main™ Z80 registers. For
this purpose, we set aside the alternative
Z80 registers. As described below, the
keyboard data port will ALWAYS be in
register C” and HL' will ALWAYS point to
the end of the incoming character queue.
One nice thing about the INC L, is that it
insures the queue will always wrap around
after 256 bytes. We do not have to move
pointers back to the beginning of the queue
once they reach its end. We have already
discussed the use of address line AlS o
reset the 74L5164°s. We waste the I'Y reg
to do just this in this application. It is
setup with the value FOOOh, As you can
see from the timing diagram of the clock
and data lines in Figure 2, there is one extra
clock pulse we have to absorb, before the
keyboard is finished sending its byte of
data. This is monitored at bit 1 of the PIO
2, port-B bit | (Figure 3).

At org 100H in the ROM, we have the
code (Listing 3) to set-up the computer and
keep it happy while it is waiting for a char-
acter.

What we have done in the above code is

36

Figure 3. Keyboard code chart for a Keytronics 1BM-compatible
keyhoard. The upper number on each key is for downstrokes and

lower number is for key upstrokes.

set-up the register pairs HL., DE, BC, and
HL’ to point to two regions in RAM
memory that will contain the incoming and
outgoing keyboard data.

Here is what will happen. When an
INT occurs, a keyboard character will be
placed at the end of a queue in the inbuffer.
The pointer to this queue (in HL’) will be
increased by one byte and a 0 placed in that
memory location. When the Z80 is not get-
ting more characters from the keyboard and
placing them in the inbuffer or sending
them to the main computer by reading from
the outbuffer (see below), it is checking if
its pointer to the character in the inbuffer is
zero. If it is not, it assumes one or more
new characters have arrived. These
characters are read from the inbuffer,
translated if need be (see below), and
placed in the outbuffer. The pointers to
both buffers are updated accordingly and a
zero flag in each buffer is set to indicate the
ends of the buffers. It is important to
remember that this is all this Z80 will ever
have to do. So, certain registers can be set
aside permanently to hold certain values.
The code is shown in Listing 4.

The subroutine TRANS is the heart of
the code. [t takes the bit pattern from the
keyboard and translates it into ASCII
characters. This is necessary because the
IBM/Keytronics keyboards sends only a
binary number representation of the key
pressed, not the ASCII character. For ex-
ample, the ESC key sends O1H, the “1”
key O2H, etc. Further, the keyboard dis-
tinguishes between key down-strokes and
key up-strokes. Up-strokes have the same
binary number plus 80H. In other words,
their most significant bit is set. This is not
all as bad as it sounds. It means we must
make a lookup table of ASCII characters
from binary values. Figure 3 shows the
way the keys are numbered on an IBM/
Keytronics keyboard. Part of the corre-
sponding table looks like:

IBMTBL: OB 0
D8 180, '1234567890~=" ,BH
3] 9H,'9'nertyuio [1',0D4
LB 1241, Pasdfghiki; ', 274,600
CB 41H, '\zxcvbrm,./' ,41H,"**
£B 1Eh," ',44H

When TRANS arrives, with say a 02H
in register A, the actual ASCII value is
obtained by adding 2 to the [HL] register

pair which is pointing to the start of the
table. Then an instruction:

§9] A, (HL}
places the correct ASCII character in
register A. The code for TRANS is as
shown in Listing 5.

For the Smart Keyboard to be of use,
we need a number of tables of the type de-
scribed above. This is because the mean-
ing of a key-board character can change,
depending on whether keys such as the
shift, lock, NUM or control keys were
previously pressed. Each time one of
these keys is pressed the appropriate flag
1s updated in RAM to set our [HL] pointer
to the appropriate table. Rather than pres-
ent all this code, I have sent it to the public
domain SIG/M library. The file SKEY.Z80
contains all the code described in this ar-
ticle.

Besides the above special keys, which
almost every keyboard has, we can add
new ones, For example, we might have a
case in which the F1 key is pressed; we
have TRANS point to a table which defines
the keys of the number keypad as special
control sequences for a word processor
such as Wordstar. F2 would point 1o a dif-
ferent table for a text editor such as Vedit.
For complete compatability with the
IBM-PC, we can have a table where un-
transiated information (binary key
numbers) is sent to the BIOS of the com-
puter and translated exactly as IBM de-
scribes.

Now for the most important feature of
the board — single-key to multi-key
translation. If TRANS observes that the
transfated key is greater in value than 7FH
{bit 7 high}, another routine which I have
named MULTI, is called. This routine
locks at the “special character” and de-
pending on its value, places not one, but a
string of characters in the outbuffer. This
string is then read by the main computer
which thinks they were individually typed.
To give you an example: If | press the “F6
key” TEST.TXT on my keyboard - 9 key
strokes + CR, the computer would receive
VEDIT TEST.TXT. At the same time, the
numeric keypad would be automatically
configured for the Vedit cursor/editing
control sequences. This is done by point-
ing TRANS to the appropriate lookup table.

Micro/SysTEMS JOURNAL JuLy/AuGusTt 1986

Because we have the power of a micro-
processor at our disposal, we can do a lot
with one keystroke. For example, [like to
have the same cursor control keys for all
my editors and word processors. Vedit
uses one control character in many
situations in which Wordstar uses two. In
fact, in some cases, one needs to toggle
two sets of dual control characters in
Wordstar to get the same effect as with
Vedit. This can be easily accommodated
with this setup. The routine MULTTI is
quite long and contains a number of
special-case treatments for special keys.
There is not room here to present the whole
routine. However the kernel of the routine
is shown below in Listing 6.

In this routine, two data areas are
used. Multi$table contains a list of
pointers to the first character of each str-
ing. The offset into multi$table X2 will al-
low the comrect pointer to be picked up.
This in turn points to the actual string
which can be of vanied length. A simplified
version of the table is shown in Listing 7.

The DROP routine then transfers each
character of the string into the outbuffer
until a 0 is reached.

One final point. When you are finished
with your special application program, it
would be nice to reset the keyboard back to
its default configuration (CP/M or MS-
DOS). It would be nice also not to have to
do this manually. This is where 1 have
utilized the NMI line to the Z80. Whenever
this line is pulled low, the ZB0 stops
whatever it is doing and jumps to 66H in
RAM where it finds the code shown in
Listing 8.

Now, while this is not entirely clear
unless you read the complete code, suffice
to say, all flags set up in memory are reset
to their initial power-on (CP/M or MS-
DOS) configuration. How does the NMI
line get triggered? This is where you have
to use your own initiative. In my S-100
system, I use one bit of an output port to
lower and then raise the NMI line on the
Z80 hoard. In the BIOS portion of CP/M +
and CP/M86, one can put the required code
in the warm-start module just before con-
trol is transferred to the CCP.

For MS-DOS, 1 utilize the fact that the
command-line prompt is definable. For
example it could be “A>" or “A$". I set it
to “Esc Esc A>". When my console out-
put driver sees the unique “Esc Esc” se-
quence, it sends a signal to the smart key-
board to pulse the NMI line of the Z80.
There are many other possibilities. Many
editors have logoff control sequences,
indeed, you could set aside one keyboard
key for the function.

Lastly, the power of the Z80 in this
application is hardly used. You can easily
modify the design to use keys to switch-on
drive motors, CRT’s, or to restrict access
to certain programs. 1 have mine connected
to a speech synthesizer that sends me all
kinds of information and reminders. {i+)

Micro/SystEMS JOURNAL JuLy/AucusT 1986

Save

Introducing Super XT-

and User's System Manuai.

o We will assemble at no charge.
® Turbo Kit — Add $50

XT, AT CASE

® Same Dimension as IBM PC/AT
* For |IBM PC/AT Compatible

Mother Boards $119

* Flip-Top For Easy & Quick |
Access to Inside i :

ONLY $60.00

- -
\" - & = di
XT, AT MOTHER BOARD

o X1-16 CPU Mother Board - $167 U0
¢ |[BM PC/XT Fully Compatible.
Run ali Poputar |IBM Softwares
* 8088 Microprocessor
w/8087 Optional
* 8 1/0 Slots
¢ Up to 640K Memory on
Maother Board
Fully Assembled & Tested

AT-32 CPU MOTHER BOARD

® |BM PC/AT Fully Compatible

* 80286 Microprocessor
w/80287 Optional

® 640K Standard, Upgrade to 1 MB
on Board

® On Board Clock Calendar

® 8 |/O Slots

$795

OEM Dealers Welcome - Please

BUILD YOUR OWN IBM XT &
IBM AT COMPATIBLE SYSTEMS

Why Pay More-Build Your Own With Ease-Have Fun-Save a Fortune-

16 Self-Assembly Kit

Assembled in Less Than 1 Hour with Screw Driver at SUPER LOW COST

¢ Including 640K XT-16 CPU Mother Board, 256 Installed, Color
Graphic Card or TTL Monochrome Card, Floppy Disk Controller
Card, One %-height DS/DD Drive, Flip-Top Case, 135W Power
Supply, Keyboard, Assembly Instruction

NLY
%6 0 S . -

XT, AT POWER SUPPLY

XT-135W $105.00 AT-200W $169.00

XT, AT KEYBOARD

XT-LED for Cap Lock

& Num. Logk

84 Keys LT e
e S

AT-Same Layout as IEM PC/AT $109

TURBO XT MOTHER/BOARD

o TLATREL X7 BSTK MY Tt ATARLD
w8 Slets IBM compatibic. Runs at
XT & AT speed. Fully TESTED &
ASSEMBLED. W/BIOS - OK $105.00

PC/XT ADD-ON CARD

¢ Disk IO Card 106

e Turbo XTM/B$195

» 384 Multifunction Card - Serial.
Parallel, Clock, Game, w/Cables

—

$70

& Software - @K $109
® Mono/Graphic w/Printer Card -

Version Il Hi-Res (Lotus 12 3) . $109
e Color Graphic Card w/Manual . $87
* Monochrome TTL Card $70
* 512K RAM Card QK w/Manual . $65
* Floppy Disk Controller w/Cable

(handle 4 drives) $55
e AS232C Card w/Manual $40
e Parallel Printer Card $30
* Game Card

(supports 2 Joy Sticks) $25

All Cards Fully Tested, Assembled & Warranteed / School & r:1s.'a."honar P.O. Accepted

call for our Special Dealer Prices

ATLAZ COMPUTER SUPPLY

616 Burnside Ave. / Inwood, NY 11696 e Mail Order Hotline 516-239-1854

(IBM 15 a lrademark of International Business Machines Corporation)

LISTING 1

LD HL,PIOTBL sBQINT 10 THE PIC TABLE
OUTBLLCK: D A, (HL) :GET BYTE QOUNTER

R A ;TEST FOR END OF TABLE

JR 2,ALLSET ;0 WHEN ALL PORTS DONE

iD B,A ;ELSE PUJT COUNT IN B

INC HL ;POINT TO PORT §

D C, (HL) sPUT FORT IN [C]

INC 1L TPOINT 1O F1IE DAIA VALUE

OTIR JGEND 2 BYTES 10 FORT IN [C]

N OUTBLOCK ;G0 TO NEXT FORT.

Continued on next page.

John Monahan is a molecular
hiologist. He received a PhD in Bio-
Chemistrv from MacMaster University
in Ontario Canada. John has been a
compuler hohbyist for the past ten
years and has huilt several homebrew

svstems. He has been a member of the
Amatenr Computer Group of New
Jerseyv for over 9 vears and recently
moved to the San Francisco bay area.
He can be contacted ar: Box 1908,
Orinda CA 94563.

data
systems

Zemrw |

prices and custom configurations on

Call First Capitol for the best

OSTV LI Odaz! W' (3q) a1
aNaN0 ¥EIINGLN0 40 MYIS: ¥444N4IN0 ‘04 al
anNand ¥dddnarnno Jo and ¥33IN9I00“ 3a a1
e v’ (zov1a) al
L W . ¢ (V1) a1
WD % o 88632 v (ZQHoM) ar
i & o Hzan MOT3E QdSO SOYId AAM TVIOHAS: ' {(Triom) a1
LA e - afedy ¥33dnd J0 ONE IV ONdZ! v (TH) a1
PR &Y A Qf E2QF SHALOWIVHD ONIWOONI ¥0d Mdddn! ¥adINENT * TH a1 :IANDEE
" @Y " ° - 3 CRE RN S,p9TSThL WYFID QL GV ¥0d! HO0040 ‘AT al
3 = % - ¥ Qs Ol 4~ IO IJIHS NI SADI ALVDIANI QL O¥Id: ¥’ (OV1dLdIHS) a1
w e,] =UO o ¥ ¥OX :NISEE
21 m.\.. W W v Luw =2 0
* QU ¥ v - B $80 € ONLISTI
¥ =N ok 3 = B os
LN s x - 2] oﬁ.ﬂv
o = b3 ™ _um =
9 T
. < 4 SINI WOSd NINIM ¢ LIS
€ ¢ o SINI TROW ANY FTEWNG! 13
- o 2 & o e
g w © C - SOR TV BIOLST! A 3 X
E = ® . 9 g S,$9TSTpL ISR OL ANTT STV 3STwd! v’ (0+X1) a1
S w Ea w ZI00TID’% A
Q = L] I = 5 e L1d
- < & S W s T
> 2 w v SZ kR w o, (agvIva) ‘¢ NI :Z300T0
= o - w39ga - m = DIDOTDIN Ar
£ g 3 I ESoy 2 o = VT 119
= o . pos £Eoad > O e O 45T O ST MOOTO ISWT Hod LIVM! Swﬁﬁwv % NI :THOOTO
v ke - g /B = ' o ¥ (TH a1
Y N TR T-5 .mn._ o W’ z WI4IND J0 ONA OVTd ¥ HOX
ok 3 2ETESDE - . A 3IXE 957 30 FIXE IXAN QL INIOH! 1 O
EES 1 r0¢3 7 v o2 v’ () a1
L o6C £ h 235 8. o —— 2 anand 40 aNE IV WALOWRIVHD LISodaq!)y NI
— — X I AV K
8T 5 >3 s . aw.. o ” b SO@ EIV 3AVS! XXd N0U10
a2 9 CBREESe - W a
c .~ v L=
O § 0 L. 5098 [w S
ev<E & qumsMP T ’ = Z ONIIST1
NoS g T Lok, 8 B o
- sy L 2 M ¥ £ W LS X w fd
ln (o] M - o [ﬂ [=)] (v =
o o o ~ 2 m [-l <
g090m o ~ Qv s M Bery a1qe3 jo puat 0 aq
i v o 1 . *s3dni1133ur oN! H qa
N RO N B g L, B oo
d 310d jo anTea: VSIHOd €a
puas 03 sa93Ag Jo Iaquny! z aa
*s3dniiajul on? HEO qad
i 0 apou! HAD aa
S D 31cd jo anTea! D4RMOd sl
...,_ £t puss 03 $93AQ JO Iaqumpy! z aa
i ...F— *s3dna1ajur oN!¢ HEO aa
. VX = T opou! Hap ad
, | == g 310d jo anTeA! g4éINOd 8a
i f \ ey puss 03 $93Aq JO IJaqumy: z =
i == *s3dna193ur oN! HED ga
= .:(n.-.... 0 =2pou? HJ0 Ha
. / R ¥ 310d jo antea! Wm0 qa
! % puss o3 s93Aq 3O Iaqunp! z aa - 191014
g
& = "SINI FIGWNE MON NWD! Id
! : b ot
w S, p9TSTpL FHL W¥AIO! ¥’ (0+A1) a1
S iy / IVOEATY ¥04 IMOd WIvg: 263 An e el a1
¥a44NE OL SINIOE [,TH]* HAJINENT “TH a1
ONISS3IXMd INI ¥M0d s9dd JdHL dNLdas: p 0.2}

Micro/Systems JOURNAL JuLy/AuGusT 1986

38

SIWALSAS/OUDIA]

9861

[
ENDSHIFT: AND 000000108 ;IS UPPER CR LOWER SECTION OF TABLE FEQ
LOOP: LD A, (HL) SEE IF ANYTHING IN INBUFFER IR 2,UPPERHALF +BIT 1=1 FOR UPPER CASE CHARS (!8%%...)
CR A D B,0
JR Z,L00F1 :IF NOTRING CHECK QUIBUFFER in C,HALF
NG L { INCREASE FOINTER FOR NEXT TIME AID L., BC +HL, NOW FOINTS TO SECOND HALF OF EACH TABLE
PUSH HL ;}GAVE THESE REGISTERS UPPERPALF:
posH BC 1D B,0
CALL TRANS :COMVERT BIT PATTERN TO ASCIT CHARS op AR ;GET CHARACTER BIT PATTERN
ECP BC ;RESTORE REGISTERS ID C,A
COP HL HL,BC 'GE‘I‘ CFFSET INTC 'IhBI.E
OR A :DO NOT SEND NULLS TO MRIN COMPUTER C (I{L} STORE CHARACI‘E‘R BACK é
JR 7, LO0P1 ff,SHIFTFIAG JNOW KEED TO SFE IF WE NEED SHIFT MODE
BIT 7.A ;FIAG TO INDICATE SPECIAL CASES &, (HL)
IR 2, NORMAL 1IF 7 THEN SIMPIE ONE TC ONE AND 000001108 +SFE IF a..,..2 T0 UC 1S REQ
PUSH HL :NEED TG SAVE IT AGAIN JR 2, ENDSHF sBITS 1 OR 2 =1 FOR UPPER CASE
CALL MULTI ;ONE IN CHAR TO SEVERAL OUT CHARS D A,C
EOP HL cp 'a'
JR LOCEM JR C, PNDSEF
, P 'z'+1
NORMAL: LD (DE) ,A ;PUOT ASCIT CEAR TN OUTBUFFER JR NC, ENDSHF
INC E sFLAG END WITH ZERD suB 20K
[OOPM: XOR A o C,a
LD (DE) ,A ENDSHF: BIT 3, (L} sARE CONTROL CHARACTERS REQ.
;{E'I' K :BTT 3=1 FOR CTRL CHARS.
2 Z
LOOPl: ID (BC) s ANYTHING TO SEND TO AND 00011111B
OR RET
JR %, 100K ;NOTHING THERE BACK TO INBUFFER QUEUE UPSTRUKE&EP IZJPSHI JIFT sWERE ANY SPECIAL KEYS RELEASED
: l”CIS
LOOP2: 1IN A, (DATASD) ;IS COMPUTER READY FOR NEXT CHAR. CP UPSH2
BIT U,ﬂ JR Z,NO'I‘SHIFI‘
JR NZ,10OP2 ;HANG IN THERE UNTII, READY gg gpcﬂg&!‘éTRL
iD A, (BC) : [BC] POINTS TO CHAR 4
NG c $FCR NEXT TIME XOR A sNONE THEN NORMAL RELAESE
ouT (DATASA) ,A {SEND IT RET
JR 10oP ISSHIFT:SET 1, {HL) ;IS SHIFT KEY SET FLAG
LISTING 5 §S§ A
4 4
TRANS: LD HL , SHIFTFLAG tFOINT TO FIAG OF CURRENT SHIFY ETC. MCDES ISIOCK: XOR B 1TOGGLE CAPS LOCK ON/QFF
BIT 7.0 ;IS KEY AN UPSTROKE MOVE BIT 2, (HL)
JR NZ, UPSTROKE JR Z,
CP SHIFT1 ;IS5 IT A SHIFT KEY RES 2, (HL)
JR 2, ISSHIFT RET
CP SHIPT2 31 TWO SHIFT XKEYS (N BCARD TOGGLE: SET 2, (HL)
JR 2,ISSHIFT RET
CP SHIFT3 ;FOR SHIFT IOCK KEY :
JP 2, ISLOCK ISNUM: BIT 0, (HL) ;THIS HAS TOGGLE TNFO FOR NUMIOCK LED/BIT
Cp NOMIDCK ;IS IT NUMBER LOCK KEY JR NZ,TOGGL
Jp 2, ISHUM 1D A, (HL) ;IF 0, FORCE IBM TABLE
cp CTRL ;IS IT THE CTRL KEY D 000011108
JP 2, ISCTRL or 001000018 +50 NEXT TIME CP/M TABLE
PUSH AF sSAVE CHARACTER FOR THE MOMENT Ip (HL) LA
call cleanflags ;CLEAR VEDIT & WS FLAGS
ID A, (HL) ;FIND OUT WHICH TABLE IS CURRENT LD HL,SFIEM
BIT ;BIT 6=1 FOR WORDSTAR TABLE CALL TALK
JR NOTSTA XCR A
LD HL, STARTABLE RET
JR ENDSHIFT TOGG1: D A, (HL) ;IF 1, FORCE CP/M TRBLE
NOTSTAR:BIT 4,A ;BIT 4=1 FOR VEDIT TRBLIE AND 000011108 :NOTE BIT 0 ALSC SET TC Z
Ik 2 , NOTVED LD (HL) A
D HL , VEDTABLE call cleanflags
JR ENDSHIFT 1D HL , SPCPY
NOTVED: BIT 5,A ;BIT 5=1 FOR IBM/DOS KEYBOARD CALL TALK
IR 7, NOTIBM XOR A
LD HL, IBMTABLE RET
JR ENDSHIFT
NOTIBM: LD HL,CPMTABLE 1X000X3XX = DEFAULT TABLE TO CP/M TABLE

“...The best software product of its kind, that
1 have come in contact with.” computer Language Magazine

“Pve found the best in CCSM...fast in development and
fast in execution...no data-typing problems, no concerns for
program size, no concerns for file or device opens...” r.o. ashwarth, Pn.o.

“...5 years in Basic, Pascal, C, dBase, and Dataflex...I have
never worked with a language/programming environment
as responsive, easy to use and as powerful as
COMP Computing Standard MUMPS?” .« wayne, Mo, h.00.

Solve your database problems with CCBM, the
Database Languagse. It comes with a 250 page manuai, to Equipment 18M-PC, AT, XT and most compatities inckding those by Tandy, Compaq, Texas instruments,
lead you step-by-step through this versatite and easy Sperry. AT&T, Kaypro and others. Memory: Single Usar: 128K; Multi-Uger: 256K and up

to learn language. Included is a 100 page Introduction

10 MUMPS, presentad n an sasyio-folow format call now for faster service 1 '800'25 7'8052 In Texas 713-520-2576

These Options Will Give You

an Even Faster Start! ¥ you prefer, order by mail P ,selmle ;e"‘z ":ea:g’ M’“’m'"""“ o 95005
ngle User disl openal manu .
“Cookbook of MUMPE” 150 page manual with MGlobal “Cookbook of MUMPS” (indudes disk)___ $24.95
accompanying disk. includes dozens of fully documented SPECIAL Single user & “Cookbock™ $75.8
routines and utilities, with axamples of contratling cutput 160t Wastheimer, Sulte 201 MUlti-tasking___$148.95
and display, global design hints, and mathematical Houston, TX 77006 Programmer's Toolkit |___ 349:95

functions. RECOMMENDED Graphics option $45.85

Multi-user. $450.00
Toolkit I: Pull-down and pop-up menus, pop-up h g 99,08
calculator, general-purpose menu driver, screen planning | VISA_MC_ AMEX_axpires ___ /___ _/___ M“"“"Psé':';;?',,rg‘;ﬁd Eﬁ;ﬂ;‘.’:’;*— ’g:oo
utilities, pop-up notepad, stendardized input handler, Texas residents add & 1/8% sales tax
and demonstration software. VEAY USEFUL card no.
Multi-tasking, Too! Run multipie concurrent back- name —
ground processes for data searches, report generation, efe. Disks are non-capy—prorected
Also Available sMulti-User +Graphics
city At zip day phene

= o
£ &
2 ;
= - =
g, 4 E
7 &
2 7 a . 2
g EE 8 E A g2gs g
= ! o
g 93%E g g v B eEEE 2 s
=9 el = A o4 o E,\.' E o o
w = ga=g = 5 %] = 4, B 0 ~ 549
u — HZA!_‘ ;‘35_'. = E f}‘“’ = .:;*1 w & - ~]
s o GROE GBS & 2 Za BEEE 2 85 & 25
: " . B - ERY HE8E & = e, B
& @ @ = =y HE B EE =55 E9p@d B & o Elj
- 5 8- o 9w OB Sof CEEE & . 8 e
H = B " EPELE o BE B 2, 259 2ERE & H 3 %
g 2 GEBuE g B2 B Bg EZ - B = >
) % £t] Serpaal 4 e = Ha SHYA mmEOE I -
E E =] faxny 4 Q0 Q H m> ZIZ® E A Ha
Z = o HE . RE RO So&Em & 5 il
] Bk B B " Ll 3 .o oa ol @ om
o 0 B . glleol H xR =z) o o RS 1 A
m o uw EO& m 53 2 B = B3 a
k £ o c mO”" @ 1T Zx ; B B0 a
3 m : H S Bgapd o Q o - - o)
C o & v gD zEEEE T GE < ¥ adg | = © 5 <
El = 7 m B B ESBEN o = = o QAS n -
< B g |2 E 3 RgHRY R 2B E o EEE |2 8. (2 gd.@
2| 3 B B - AR g . | B x{‘-h_lé
- - "~ e @ H S = |4 OB o
& o ~ = o2 & | ’E:HE 5
8 | < 5 usH 2
0 o EEel v ooy Ol ®
hL e S sn<o=ad
o e > [y en
- — — o Ur UV o eg =
g E 2 8§ 2 ERER 2 HHAR o
2 & & ¥ s gtusoTe B g BREE B B@sH 8 &
|} = W~ - - - - w - 3 = p, = 2
= = ot iy ~2 BOaEddc~n <anuin ~=zUn 0 SEr B CSSEB»‘%
< ™ < < S £ -
iy el Bﬁ iel Q o] E,,)LJ ;‘; : : §
7 5l o8 dooao oo s acbBoZ8x — " z .3 M@OOE *Q =
HE EAE ggh :r§: AN ASaEaaSS R 5P 5saR %5555-5 fafafataiital =
> 3 o . ol = g3 EU’JEE:{ é
=k & = < : R e § a ‘89&« [
a 71 =T C 33 g 258 2
OE : & bR L = = w0
H 0 w2 .

Micro/SystEMs JourNaL JuLy/Aucust 1986

