
-i-

TABLE OF CONTENTS

1.0 INTRODUCTION. . · · · · · . · · · 1

2.0 NORTH STAR DISK HARDWARE. · 2

3.0 ASSEMBLING A NORTH STAR DISK SYSTEM . · 4

4.0 THE NORTH STAR DISK OPERATING SYSTEM (DOS). · 8

5.0 NORTH STAR BASIC. · · · · · . . . · · · . . . 27

6.0 CONCLUSIONS . . . · · · · · . . · · · . . 41

-ii-

LIST OF TABLES

TABLE OESCRI PTI ON PAGE

1 Sector Test Program 6

2a Patch Point Changes (HEX) 10

2b Patch Point Changes (OCTAL) 11

3a COUT Routine 11

3b CIN Routi ne 12

3c CCONT Routine 12

3d TINIT Routi ne 13

4 Copying the new DOS 13

5 Creating DOS/BASIC File 14

6 File Types 15

7 Changes Which Allow Use of 0-8K 19
for Program Storage (Version 2
BASIC)

8a UPMOVE Routine 23

8b DOWNMOVE Routine (Similar to UPMOVE) 24

9a Direct Commands 27

9b Statements 28

9c Functions 29

9d Basic File Access Commands 30

10 Edit Commands 30

11 Logarithm Test 34

12 Comparison of MITS and North Star 35
String Functions Operating on a 20
Character String

13 Additional MITS Extended Basic 37
Operations

14 North Star BASIC Loader for 39
Processor Technology's VDM-l

-1-

1.0 INTRODUCTION

This report is a brief review of the North Star floppy

(micro-) disk system. This device. including its attending soft

ware, very nicely matches the needs of a small (less than $4000)

microcomputer system.

The discussion is divided into several progressive sections.

The foHowingsection deals with hardware aspects of the North

Star disk system, along with some spot comparisons with other

products. The next section provides a user-oriented description

of North Star's very adequate disk operating system software.

This software is capable of accommodating the needs of most

small system users. Also included is a description of how to

"pa tch" in personalized hardware. with the ~lITS 88-510 as

a specific example. The next section considers North Star's BASIC

software. This software has both good and bad features. along

with at least one major glitch which should have been caught before

distri buti on.

-2-

2.0 NORTH STAR DISK HARDWARE

It is probably generally true that in the development of a small

micro- (and perhaps mini-) computer system the first mass storage

device is either a PROM, a magnetic tape cassette recorder or a

paper tape reader/punch, or all simultaneously. The next step up

is a floppy disk, the micro-disk representing the low end of

the improvement.

The North Star floppy disk hardware appears to have good
features for the price. For example, PERTEC Computer Corpora
tion (owner of MITS, Inc~) advertises a disk drive at

twice the retail price of the North Star and emphasizes that

their new micro-disk system has a head disengage feature which

breaks contact after 5 seconds of no disk 1/0*. The North Star

hardware also has this important property but they do not

advertise it as such a feature is taken for granted by pro-

fessionals. Generally, most microcomputer systems operate

with the head in contact with the diskette only perhaps 1%

of the time**, and an automatic disengage feature is a must.

As a comparative example of the ability of the North Star system, we

may compare it with the Sykes floppy disk (not a micro) system which is

*The manual presently states 6.4 seconds. .
**For the North star drive, MTBF is 8000 hours, assuming 25% motor

duty cycle. Medium life is said to be 3 million passes, or
roughly the drive life.

-3-

used with our PDP-8. At many times the North Star price, the

Sykes disk has less than twice the data (bit) transfer rate and

storage capacity of the North Star. Two North Star's would have

been a.much better buy than one Sykes, assuming the North Star

disk accesses could be interleaved while maintaining the maximum

access rate of either disk.

As another comparison point, we also have a PERTEC floppy disk unit

(not their newly announced micro-disk which they call a IImini")

connected to an Altair B800a R. It took some time to get this

system up and running (as opposed to the North Star system which
.

went without a hitch). The final snag encountered was the memory

size (in bytes) required to just get the system going: 24K*, in

comparison to the North Star requirement of l2.5K. The PERTEC disk

system costs more than twice that of the North Star, while also

requiring an extra 8K of memory.

Although North Star does not have a large reputation, they are

sure to grow. The quality of their product is quite good. One

way they could improve their position is to develop a large

variety of software to accompany their hardware system. An

example might be a BASIC compiler (instead of interpreter) option.

We presently have a FORTRAN compiler on the North Star system.

*The newly advertised PERTEC microdisk system is said to require
20K of memory, including BASIC.

-4-

3.0 ASSEMBLING A NORTH STAR DISK SYSTEM

The North Star disk drive (manufactured by a Xerox subsidiary,

Shugart) is controlled by a printed circuit board which fits

into a 5-100 bus computer. Included on the controller board

are three preprogrammed fusible-link (titanium-tungsten)

ROM's. This on-board program is required for the bootstrap

loader which starts the system up. Such is not the case with

the more expensive PERTEC disk system which has an optional

1702 PROM bootstrap, requiring an additional board.

Included in the standard hardware documentation* is a checkout

procedure for the controller board which largely consists of

looking for pulses of the right shape and repetition rate.

However, there is no hardware trouble-shooting guide to handle

the situation in which a failure occurs in the checkout procedure!

However, we have had no failures to date.

The power reqUirements for the controller board are taken care of

by the computer bus supply. The disk drive requires +5 and +12 volts

for operation. In principle, these could also be obtained from the

computer bus. In particular, the +5-volt demand in less than one

*North Star optionally supplies additional hardware and documentation
for disk drive head alignment, timing and general repair.

-5-

ampere. and is thus no problem. However. the +12-volt demand

is between one and two amperes. which is a little high. North

Star offers the option of no power supply, a regulator board which

accepts unregulated +8 and +18 volts. or a complete power

supply.

Before hooking everything up, some board jumper changes are required

in the eventuality that more than one drive is to be driven by the

one controller board. Up to three drives can be connected in

parallel and controlled. Also, it appears that multiple control·ler

cards can be used to handle more disks with only minor modifications

of hardware and software. These alterations are well laid out in

the manual and are simple.

Connecting the controller to the disk drive P.C. board is relatively

simple. A nice 4-conductor ribbon cable is supplied with already

installed end connectors. The directions for plugging into the

controller board are crystal clear. However. the connection to the

disk drive board is a little confusinq. North Star's directions'

are technically correct. but not immediately interpretable. As an

aid in choosing the correct one of two orientation possibilities, note

that if the drive unit ;s oriented with the drive board at the top.

the cable connection will be such that the cable will want to

naturally (no bends in the ribbon) come out the bottom of the drive.

However. there are obstacles to bringing the cable neatly out the

-6-

bottom of the unit and the ribbon ends up getting bent back up

towards the top of the drive in something short of an "S".

Once the controller, power supplY,and drive are connected, North Star

provides two simple checkouts. The first is the running of the

following program:
TABLE 1,;

Location (Hex)

Sector Test Program

Operation (Hex)

2000

2003

3A 80EB

C3 0320

, LOA EB80

JMP 2003

Running this loop presumably turns on the drive motor for 5 seconds.

The next test is a little more visible. In this case you examine

address EB20. This results in the sector position field* (0-9)

being displayed on the lower four bytes of the data bus.

The first real test of operation is to be found in operating the

ROM bootstrap loader. This is done by running from location E90D

(the ROM bootstrap smartly happens to be out of the way of the

standard Processor Technology or MITS 2K PROMS which tend to be

placed in the last 2K of memory for other software uses). The

*The diskette has 10 sector holes in it which are used for locating
fields. The corresponding PERTEC drive/controller uses a 16 sector
diskette. The two are definitely not interchangeable.

-7-

head immediately engages with a "loud click" (more appropriately

described as a lI cl ac k"). followed by "muted clicks ll as the head steps

to track 110 11 for referencing. Now we cross the boundary between

hardware and software.

-8-

4.0 THE NORTH STAR DISK OPERATING SYSTEM (DOS)

Once the hardw~re is up and going, the task of putting together an

operating system begins. Fortunately the DOS software and instruc

tions supplied by North Star make this an easy job. To proceed

in an organized manner, we will first discuss how to interface

user I/O hardware to the North Star DOS, and then briefly consider

the electrical structure of the diskette, file format, and some ideas

on how to manipulate files.

Patching your own I/O routines into North Star's DOS is very simple

and straightforward. The following four called routines are

required:

caUT: Character output routine. This routine assumes that the

DOS has placed the ASCII character to be outputted in register B.

It then should test the status of the output I/O device etc.

Finally, the routine should return after also placing the outputted

character in the accumulator. This is the routine one deals with

when interfacing to a VDM-l video terminal, or other output devices.

crN: This routine is required to place the 7-bit ASCII

character to be input- into the accumulator and then return. This

routine should also do status checks, etc. Most likely a keyboard

will be the target device. However, one can also patch to a cassette

interface for linking subroutines by making the computer think it

is seeing a terminal.

-9-

TINIT: This is a terminal initialization routine. It is meant to

handle I/O devices which are required to be set up prior to computer

operation. For example, the IMSAI 2S10 and MITS* boards require

such an initialization. This routine has no effect on the DOS, so

it can also be used for any util ity function which might be performed

upon disk startup, such as starting a clock to keep track of disk

hours, etc.

CONTe: Thi s routi ne' s job is to detect the presence of a "CONTROL-C':

It does this by setting the zero flag if "CONTROL-C" occurred. To

avoid hanging the computer up in a loop, this routine should check

to see if a "CONTROL-C" ~ typed, and not wait until one is typed.

The actual software patching shown below is for the specific case of

an (old) MITS SIO, REV. 1. The changes to be made for Processor

Technology's VDM-l video display are described in the section on

BASIC; a "poking" program is used.

Before patching into the DOS, the DOS must be loaded into the

computer's active memory. This is done by placing the software

diskette provided by North Star into the drive. The disk bootstrap

(on PROM) is then run from location E9DD. The DOS will load

and the computer will go into a loop at TINIT; the software provided

has self-loops at the patch points and will not operate until it i~

*A trademark of PERTEC Computer Corporation.

-10-

"persona1ized". Stop the machine and make the changes shown on

Table 2A (Hex) and Table 2b (Octal). Observe that we are changing

self-loops to unconditional jumps.

TABLE 2a

PATCH POINT CHANGES (HEX)

Address (Hex) Was (Hex) Change to (Hex) Reason

2000 (COUT) C30020 C30029 To jump to a memory
region having

2010 (CIN) C31020 C31029 enough room for the
I/O routines. This

2013 (TINIT) C31320 C33029 could also be a loca-
tion in a PROM moni-

2016 (CONTC) C31620 C32029 tor, such as the TDL
monitor which is used
for I/O by all TDL
software.

There are several items to note at this point. First, the self-loop

locations in the first column are branched to by the DOS using a "call".

Thus the software routines we have just arranged to jump to must contain

"returns", and not "jumps" as their concluding operations. Also note

that the TINIT routine is implied to be at 2930. above the other

routines. As this routine has some alternate uses, it should have some

breathing room. This extra room extends to just below 2AOO, where

the North Star BASIC interpreter (see the next section) starts.

-11-

TABLE 2b

PATCH POINT CHANGES (OCTAL)

Address (Octal) Was (OCtal) Change to (Octal)

010, 015 303 303
015 000
010 051

OlD, 020 303 303
020 020
010 051

010, 023 303 303
023 060
010 OSl

010 t 026 303 303
026 040
010 051

The next step in personalizing is to toggle in the I/O subroutines
starting at the locations just branched to. These programs are shown
on Tables 3a thrQugh 3d. A MITS SID, Rev. 1 is assumed*.

TABLE 3a

COUT ROUTINE

Location Hex (Octal)

2900 (051,000)

2902 (051 ;002)

2904 (051,004)

2907 (051,007)

2908 (051,010)

290A (051,012)

Code:Hex (Octal)

oBoo (333,000)

E680 (346,200)

C20029
(302,000,051)

78 (70)

0301 (322,001)

C9 (311)

Function

In (Input status from
port 0).

ANI (Check 01*' For MITS
SIO, active low is a
II go " condition).

JNZ (If 01 is not low,
~ry aga~ nJ.
MOV A;B (Move the char
acter from the B regis
ter to the accumulator1.
OUT (Output character to
port 1).

Return (Return to original
call) . .

*00 is the least significant bit; 07MITS conventi~n.

the most significant; .

*S;milar information is supplied in the DOS manual.
patches are specific to the SIO and differ in some

However, the above
respects from the North Star.

Location Hex (Octal)

2910 (051.020)

2911 (051.022)

2914 (051.024)

2917 (051. 027)

2919 (051,031)

291A (051.033)

-12-

TABLE 3b

CIN ROUTINE

Code Hex (Octal

OBOO (333.000)

E601 (346.001)

C21029
(302,020.051)

DBOl (333.001)

E67F (346,177)

C9 (311)

TABLE 3c

CCONT ROUTI NE

Function

IN (Input $tatus from port 0)

ANI (Check Do)

JNZ (Loop if Do not low)

IN (Input character to
accumulator)

ANI (Mask to 7 bit ASCII
character)

Return

Location Hex (Octal) Code Hex (Octal) Function

2920 (051,040) OBOO (333,000) IN (Input status to check if
character has been typed)

2922 (051, 042) E601 (346,001) ANI (Test to see if Do low)

2924 (051,044) CO (300) RNZ (Return if no character
typed)

2925. (051,045) OBOl '(333,001) IN (Input character to
accumulator)

2927 (051,047) FE03 (376,003) CPI (Test to see if character
was CONTROL-C; set zero flag
if yes)

2929 (051,051) C9 (311) Return

-13-

TABLE 3d

TINIT ROUTINE

Location Hex (Octal)

2930 (051,060)

Code Hex (Octal)

co (31l)

Function

Return
or

Any machine language routine (with a size constraint), using any
registers, followed by a return.

Another DOS change which is optional is to place 01 in location 2028.

This causes the disk software to verify every write operation with a

read.

Once the changes shown on Tables 2 and 3 are made, the DOS may be

properly entered and operated by running from TINIT (examine 2930 Hex

and run). An asterix prompt character should appear on your output

display. At this point it is a wise idea to start a new diskette and

place your new DOS on it. This is done using the following commands.

These, commands are typed in follOWing the asterisk prompt, followed

by a carriage return.

TABLE 4

COPYING THE NEW DOS

Command

*CR DOS 10

*SF DOS 2000

Purpose

Initializes diskette (prepares it for future
operation) .

This creates a file called DOS having a
length of ten 256 byte blocks.
The DOS software starting at 2000Hex and
running 2560 bytes is loaded into the DOS
file opening on the diskette.

*In the new versions of the North Star DOS, the DOS should be loaded into
some other region of memory, adjusted, and saved from there to avoid
problems which occur when the DOS tries to save itself.

-14-

While you are creating your first disk file operating system, you

may as well also include North Star's BASIC. This is done by

removing your new diskette, putting in the software diskette

supplied by North Star, and doing the following (Table 5).

TABLE 5

CREATING DOS/BASIC FILE
(Version 6, Release 2, 3)

Command Purpose

*LF BASIC 2AOa This loads the 40-block BASIC program
from the software diskette into memory
starting at 2AOa.*

--Remove software diskette. Insert your new file diskette--

*CR BASIC 40

*TY BASIC 1

*GA BASIC 2ADa

*SF BASIC 2AOO

Create a 40-block-long file table entry
on your new diskette.

This creates a table entry which tells
the DOS that the BASIC file is in machine
language.

The DOS is told that the "go address lt

of this machine language file is 2ADO.

The 40-block BASIC program is saved.

The above is a blow-by-blow description of how to get your disk software

going. ~le now consider the logical structure of the diskette being used

and the general operating characteristics of the DOS.

The diskette is used on one side only in a single density mode** in which

there are 35 concentric tracks numbered a to 34. Each track has ten hard

*How the DOS automatically knows BASIC is 40 blocks long will be discussed
shortly.

**As opposed to Shugart's new double-density micro-disk drives. PERTEC also
has announced a two-sided drive system.

-15-

sectors which are physically located according to ten holes in the

diskette. Each track in each of these sectors contains a string of

overhead data plus 256 bytes of "user" space. That is, in each sector

you can place 256 bytes worth of information, not including the

accounting information which the DOS takes care of automatically.

The North Star convention is to number the sectors from 000 to 349.

The DOS uses sectors 000 to 003 to store (again, automatically) a table

or file directory which contains the file name (up to 8 characters

long, excluding blanks and commas), type (default is "0") and possibly

a "go address". Up to 64 files can be placed on one diskette, the

limitation caused by the file directory length. The file types are

explained in Table 6.

TABLE 6

FILE TYPES*

TYPE

o

1

2

3

>3

PURPOSE

Default. With this type one can manually
(LF and SF) move files to active memory
and vice versa.

Machine language file which can have a
"go address"

BASIC program file.

BASIC date file.

Assembly language, etc. files.

*The XEKC Assembler/Disassembler software available from the Westminster
(CA.) Byte Shop also uses type "8" to denote assembly language files.

-16-

North Starls description of the DOS commands is simple and complete.

These commands can accomplish the following:

• Initialize or test a diskette. Initialization takes about 10

seconds on the North Star, as compared to eight minutes on a

PERTEC unit which is about 4X larger in capacity (the larger of the

two PERTEC floppies).

• List directory (file name, size and type, but not "go address").
Newer versions list "go address".

• Create a file space/name.

• Delete same.

• Define a file type.

• Compact a diskette set of files (useful after deletions).

• Load a file into active memory starting at a specific address.

• Save a file similarly.

• Set "go address" of a machine language file. Specified in TYPE
command in newer versions.

• Move one file into another on the same diskette.

• Read or write to or from a file or RAf1 address in integral numbers
of blocks.

-17-

The last function may sound limited to those who want to move individual

bytes around. However, the command structure of North Star BASIC allows

one to address any byte position within a block, thus opening up some

versatile file management capabilities which are useful in data

handl in9.

Loading BASIC with the new software diskette is easy. Once the DOS is

loaded in and running, type "GO BASIC" and roughly two seconds later

11 READY," 1 1 d dwi 1 appear, siGnifying that BASIC has oa e . Thi s response

time is not surprising. The rotation speed of the diskette is 300 rpm,

or 50 blocks/second. This is the equivalent of an average data transfer

rate of roughly 12.5K bytes/second*. North Star BASIC occupies about 10K

bytes (more in the newer version) of memory, and therefore should take

less than a second to load. The head engagement and drive motor

start-up account for a good fraction of the observed response

time.

Once BASIC has been entered, the DOS is still alive in the approximately

2.5K of memory below BASIC. The DOS can be returned to by typing in

IIBYE". This arrangement is convenient, but also causes some small

difficulty unless guarded against. For example, if one has written a

BASIC program too large to fit on the present diskette, there might be a

temptation to test a new diskette, initialize it and try to load the

*The 300 rpm value is from the PERTEC manual; both PERTEC and North Star
use the Shugart 400 disk drive. PERTEC states its transfer rate to be
125,000 bits/second. As their disk capacity (user available) is 71,680
data bytes, versus 88,832 data bytes for North Star (first 3 blocks not
counted), PERTEC must be specifying a eeak, not average, transfer rate.
Such is the game of "specsmanshipll.

-18-

file to be saved onto that empty diskette. That approach will not

work. The DOS test and initialization functions both use 2.5K bytes

of memory above the DOS. cutting into BASIC and destroying it along

with your program. Another approach could be to compact the disk

being used. hoping to free up enough space for the program. Un

fortunately, the compacting function also uses memory above the DOS.

The reason for loading the DOS and BASIC on every diskette. including

the spares, is a matter of convenience and safety. From the convenience

perspective, giving up 50 blocks out of 350 is a small price t~ pay

to avoid the nuisance of switching diskettes around. From the safety

point of view. it is possible to wipe out a complete diskette file if

the protect notch on the diskette is not covered and a mistake is made.

When such happens. it is reassuring to have extra copies of the DOS

and BASIC around. Also, duplicate your files on separate diskettes.

Incidentally, if you are going to create a diskette having the DOS

on it, make the DOS the first file. The ROM bootstrap on the interface

board expects to find the DOS file starting at sector 004.

It is apparent from the memory address references given above that the

DOS/BASIC combination starts at 2000 (HEX). leaving the lowest 8K bytes

of memory possibly unused. The software package provided by North Star

uses the memory above BASIC for program storage, leaving the 0-8K

region free. This region may be instead used for probram storage by

making the following changes in BASIC.

-19-

TABLE 7

CHANGES WHICH ALLOW USE OF 0-8K FOR PROGRAM STORAGE (VERSION 2 BASIC)

Location Hex (Octal) Code Hex (Octal)

2A06 (052 t006) .00(000) Low order byte of the beginning
address of program storage space.

2A07 (052 tOO7) 00(000) Hi gh order byte.

2A09 (052.011) FF(377} Low order byte of the end
address of program storage space.

2AOA (052.012) IF(037) High order byte.

The above modification restricts one to a maximum of 8K bytes of program

memory. This does not represent a significant limitation in program

storage for most applications. However, a programmer might prefer to

leave memory space free below the DOS/BASIC for special use. For

example, if interrupts are ever to be employed, it is important to note

they use service routines located at the beginning of memory (8080 case;

the Z-80 microprocessor has other interrupt mode). Thus. it is convenient

to leave this space free for eventual interrupt service routines. User

machine language routines may also be conveniently placed in this region t

and in the next section a VDM-l video display routine is presented which

resides in memory starting at the 2K boundary. Another potential use

for the 0-8K region is found in observing that MITS SK BASIC can be

-20-

resident in active memory at the same time as the North Star

DOS and BASIC. This is helpful in that North Star's BASIC

lacks some features that the MITS 8K BASIC has. This will be

discussed in the next section. As a further application, it is

possible to use the 0-8K region as byte-wise data storage space,

though this can be costly in both software overhead and computing

time.

To conclude this section, a few examples of file creation using

the DOS are in order. For the first example, consider the storage

of MITS 8K BASIC. The actual length of this software is a little

more than 6K bytes and is assembled starting at 0000 (Hex). It

can comfortably reside in the 8K of memory below the DOS. leaving

almost 2K bytes of program storage space between its top and DOS's

bottom. One way to put 8K BASIC into the file system is shown

below:

1) Load in the DOS

2) Create the 8K BASIC file entry:

*CR 8KBASIC 33
*TY 8KBASIC 1
*GA 8KBASIC 0000 (older versions)

Observe that 8K BASIC is a machine language file (type 1), 33 bloc.ks

long, having 0000 as its "go address".

-21-

3) Stop the computer.

4} Load in the MITS 8K bootstrap loader (see the MITS manual.
Cassette tape is assumed).

5) Set sense sWitches (A15 up for MITS SID terminal at ports
0,1; 88ACR at 6,7).

6) Start tape. Run computer from 0000.

7) When "MEMORY SIZE" is requested by 8K BASIC, stop the
computer.

8) Enter into and run the DOS from location 2000 Hex. This
brings the DOS back into operation.

9) Save 8K BASIC as follows (remembering to unprotect the
diskette);

*SF 8KBASIC 0000

10) Protect the diskette.

8K BASIC is now part of the disk file system. To run it, simply

type "GO 8KBASIC". However, remember to set the sense switches

before "go ing ll
; it's easy to forget those switches. Also, when 8K

BASIC asks "MEMORY SIZE?", responding with more than 8191 will

cut into and destroy the North Star DOS, which you may not care

about anyway.

As a second example, cansider adding MITS's excellent 12K BASIC

(Extended BASIC) to your file system. This software is also

assembled to start at DODO, but it is 10312 bytes long, not

including program storage space. Obviously, loading Extended

BASIC in will overrun the DOS. In fact, the DOS cannot be used

*Audio Cassette Record Interface

-22-

directly to load Extended BASIC as it would be wiped out before

completing the program transfer. To deal with this situation

one may use two very short machine language files called UPMOVE

and DOHNMOVE. The machi ne language 1istings of these programs

are shown on Tables 8a and 8b. UPMOVE is a routine which shifts

the first 63 blocks (16K-256 bytes) of active memory upwards to

an address region starting at 16K + 256. UPMOVE itself resides

starti.ngat 16K. DOWNMOVE does the reverse. Also, when DOWNMOVE

has completed the downwards transfer, it unconditionally jumps

to 0000 Hex, thus starting operation of the machine language

program it loaded there. To see the mechanics of this procedure,

assume you have already created two one-black-long machine

1anguage fil es, UPMOVE and DOWNMOVE, having "go addresses"

o~ 4000 Hex. These ~go addresses" are not used in this application,

but have been established for future utility. Also assume you

have created a machine language file space called 12BASIC which

is 42 blocks long (INT(10312/256) + 1). The steps taken in

adding Extended BASIC to your repertoire are as follows:

Address Hex (Octal)

4000 (lao, 000)

4003 (100,003)

4006 (100,006)

4007 (100,007)

4009 (100,011)

400C (100,014)

4000 (100,015)

400E (1'00 ;O~l)

400F (lOO,017)

4010 .(l 00 ,020)

4013 (100,023)

-23-

TABLE8a

UPMOVE ROUTINE

Code Hex (Octal)

210041 (041,000,101)

010000 (001,000,000)

7C (174)

E6S0 (346,200)

C21340 (302,023,100)

OA (012)

77 (lS7)

03 (003)

23 (043)

C30S40 (303,006,100)

C31340 (303,023,100)

Function

LXI (Load H&L registers
with 1SK+252 address
boundary)

LXI (Load B&C registers
with OK address
boundary)

MOV A,H (Move H to A)

ANI (Test to see if 32K
boundary has been
reached)

JNZ (Jump to finish
loop if move has been
completed)

LDAX (Load accumulator
with data stored at
address given in B&C
register)

MOV (Move accumulator to
address specified by
H&L registers)

INX (Increment B&C)

INX (Increment H&L)

JMP (Jump to H register
test)

JP {Loop when finished)

-24-

TABLE 8b

DOWNMOVE ROUTINE (Similar to UPMOVE)

Address Hex (Octal) Code Hex (Octal)

4000 (lOO,OOO) 210041 (041,000,1 01)

4003 (100,003) 010000 (001,000,000)

4006 (loa ,006) 7C (174)

4007 (100.007) E680(346,200)

4009 (100,011) C21340 (302.023,100)

400C (lOO,014) 7E (176)

4000 (100,015) 02 (002) .

Function

LXI H&L

LXI B&C

MOV A,H

ANI

JNZ

MOV (Mov to accumulator
data at address speci
fied by H&l registers)

STAX (Store accumulator
at address specified
by B&C registers)

400E (100.016) 03 (003)

400F (100,017) 23 (043)

401O (lOO,020) C30640 (303,006,100)

4013 (100,023) C30000 (303,000,000)

INX B&C

INX H&L

JMP

JMP(Jump to beginning
of program just moved)

1) Load (but do not run) UPMOVE: *LF UPMOVE 4000

2) Stop the computer; toggle in the 12K BASIC bootstrap loader

(seethe MITS rna nua 1) ; set the sense swi tches; load the

Extended BASIC software into the computer.
I

-25-

3) When "MEMORY SIZE" is requested, stop the computer, examine

4000 Hex and run. The upwards shift of 12K BASIC will take only

a moment and completion will be apparent from the address lights

on the computer's front panel.

4) Again stop the computer and reload the DOS (run from E900).

5) Replace UPMOVE with DOWNMOVE: *LF DOWNMOVE 4000.

6) Place the combination of DOWNMOVE + Extanded BASIC onto the

diskette. *SF 12BASIC4000.

Extended BASIC may now be loaded and jumped to (remember to set the

sense switches beforehand) by typing "GO 12BASIC" when the DOS is

active.

The above examples may be applied with variation to create disk files

of almost any software.

As a third and very simple (but important) example we consider

moving files between diskettes, such as might b~ done in copying

a diskette or reorganizing. This is done as follows:

1) Load the file directly into free memory (e.g., *LF FILEX 0000)

-26-

2) Remove original (or source) diskette and insert the new (or

destination) diskette.

3) Create an identical file entry on the new diskette.

4) Directly save file (e.g., *SF FILEX 0000)

The f1exibi1jty of the North Star'OOS, combined with some user

creativity, is conducive to the generation of very powerful

applications. In the next section we will discuss the North Star

BASIC interpreter which operates in conjunction with the DOS.

However, it should be noted that sufficient information is supplied

in the North Star documentation to allow some measure of linking

of the DOS to other BASIC interpreters having user defined machine

language subroutines.

-27-

5.0 NORTH STAR BASIC

North Star BASIC, Version 6, Release Z and higher t is a more than
adequate interpreter. It has some features which the industry standard,.
MITS Extended BASIC, does not have, and vice versa. Instead of des
cribing all its features, I will concentrate on the differences between
North Star BASIC and MITS Extended BASIC, taking the latter as a bench
mark. Also presented in this section is a program for use with the
North Star system which does a complete job of linking Processor
Technology's VDM-l video display control board to the DOS; just load
the program, type II RUW' and the VDM-1 display device will be part

of the microcomputer-disk system.

We first consider North Star BASIC's inStruction set. See Tables

9a, b, c, d and 10 ..

TABLE9a

DIRECT COMf1ANDS
<opt. line no.>
<opt. line no.> • <opt. line no.>

(= NEW) : Scratch or delete
<opt. beginning value> , <opt. increment> : remember
continue after "stop" or IlCONTROL-C"

<no. of characters> (= WIDTH = < » : line width control

RUN
LIST
SCR
REN
CONT:
LINE

NULL
LOAD
Save
Edit
BYE:

<no.>
<file name>
<fil e name>
<line no.>
Return to DOS

Disk operation*
Disk operation*

*Note, however, that MITS BASIC has similar commands for tape files.

-28-

TABLE 9b

STATEMENTS

LET ;(optional)

IF/THEN/ELSE (~an cascade)

FOR/STEP/NEXT

GOTO

EXIT (GOTO out of a FOR/NEXT loop)

ON/GOTO

STOP

END (stop w/o message)

REM (remark)

READ/DATA/RESTORE

INPUT/INPUTl (no carriage return)

GOSUB/RETURN

PRINT <.Formats: nFm, nI, nEm, default)
(also zero suppress, commas, auto $)

FILL l= POKE)

OUT

DIM

DEF (function definition)

~29-

·TABLE 9c

FUNCTIONS

FN (name) (X
I
'x

2
.••) : User defined function

FNEND: End statement for mUltiple line user defined function.

FREE (0): Remaining free storage

CALL ,): Machine language subroutine call

TYP (): Gives type of information in next disk file element.

INP (): Input from specified port

EXAM t): =PEEK (

ASS t): Absolute value

SGN) : Value/Abs (Value)

INT) : Integer

LEN) : String length

CHR$ () : Decimal -+ ASCII conversion

Ase } : ASCII + Decimal conversion

VAL) : Value of number string

STR$ () : Number + string conversion

SIN C. } : Sine

COS C.) : Cosine

RND t) : Random number generator

LOG l) : Natural Logarithm

EXP): Exponent

SQRT (): Square root

-30-

. TABLE 9d

BASIC FILE ACCESS COMMANDS

Open # <file no.> ,<file name> assigns number to an active file;
sets file position pointer to file
beginning.

Close # <file no.> Deactivates access to file and empties write
buffer into diskette file.

Write # <file no.> , <list of items>

~ad j <file no.> , <list of variables>

Write # <file no. > , " <file pointer> , <list of i terns>

Read # <£ile no.> , , <file pointer> , <list of variables>

TABLE 10

EDIT COMMANDS

Character Function

Control D < > Copy to specified character

Control Z Erase character

Control Q Backspace

Control A Copy old character

Control G Copy rest of old line

Control y -< > Insert specified character

Control N Re-edit new line

~31-

Starting with the direct command set (Table 9a) we find pretty

much the same list as exists in MITS Extended BASIC*, with the

following notable exceptions:

• REN in MITS BASIC can start at a specific statement; the North

Star analog renumbers the whole program.

• LINE controls the output from the "PRINT I1 command, and not the

"LIST" command: Thus, long program statements attempt to print

out full width. This is annoying when using a narrow width

printer.

• NULL in North Star's BASIC is limited in argument size to 32 in

Release 2, and does not work in Release 4 and ,5; MITS BASIC

handles NULL's up to 255. At 30 characters/second, the delay

time difference between 32 and 255 is one second maximum vs. about

8 seconds maximum. Delays are useful for slow carriage r~turn

terminals and in some protocol situations.

• LOAD, SAVE and BYE are all disk commands which have counterparts

in the disk version of MITS BASIC.

• EDIT in North Star BASIC is technically a little more versatile

than its counterpart in MITS BASIC as the line number may also

be changed; the old line is directly treated as a template.

North Star's statement complement (Table 9b) is very similar to that

of MITS Extended BASIC, the exceptions being:

*Version 3.2.

-32 ..

• 1£ in North Star BASIC considers the next line to be the statements

added to the same physical line with a 11:11 or "I". MITS IF uses

the next physical line. The MITS version is more flexible. The

next line feature of the MITS version can be defeated with an

UELSE"i IF < > THEN < > ELSE < >: Next statement.

• GOTO in North Star is not tolerant of a ~pace between GO and

TO. Also, in the North Star version GOTO can not be used as a

direct statement; RUN <line number> fulfills this function.

• EXIT in North Star allows a graceful exit from a FOR/NEXT loop

leaving a correct stack arrangement.

• INPUTl stops the carriage return echo after the user1s reply.

This has some formatting advantages.

• FILL equals MITS's POKE. It's curious that these statements are

different only in name as North Star did make allowances in its

interpreter to translate ":" (line delimiter) and ";" (no carriage

return), which are used in M"ITS BASIC, into North Star's eqUivalent

"\11 and II 11, . No such translation is done for PEEK and POKE.

The function list (Table 9c) is as complete as any, including both

numeric and string functions with the very notable exception being

the absence of an inverse trig function in Release 2 (the newer versions

contain it). Also, one of the functions, log (X), has a problem

(at least in North Star Version 6, Rel ease 2). Thi s error can be

programmed around, but is nonetheless annoying.

-33-

North Star offers accuracy options ranging from two to fourteen

digits. The option must be specified when ordering the

software; it is not adjustable once received.

Although the MITS and North Star functions are very similar, there is

a very significant difference between the string variable forms. In

MITS Extended BASIC, string variables can be up to 255 characters

long, which is a limitation I have encountered. These string .

variables may be dimensioned in matrices such as A$(I.J.K). The

power of this structure is that string variable matrices can be

created which are very useful in heavy I/O oriented programs. To

sUbsequently manipulate these strings, the MITS software provides

functions such as LEFT$. RIGHT$ and MID$.

The North Star string form is much different. String variables are

limited in length only by available memory. The VDM-l video display

load program presented later has a Hex string. AS. 678 characters

long. which would be illegal in MITS BASIC. However. North

Star1s string variables can not be subscripted. The equivalent

MITS BASIC string functions are implemented in North Star BASIC

as shown on Table 12.

·34..

TABLE 11

LOGARITHM TEST

LIST

19 FOR >;=9 TO -9 STEP -1
20 PRltfT ~0F7JLOG(letX)!LOG(13),

30 PRWT M CORRECT::: ", (~2r.. X
49 NEXT X
REfllJlr'
RUN

9.0000030 CORRECT :: 9
8. 00130001 CORRECT :: 8
7.00013001 CORRECT = 7
6.0000002 CO~:RECT = 6
5.0000902 CORRECT = 5
4. 0009f.-J0tl CORRECT = .;
3.0013l300e CORRECT = 3
2. 008000£1 CORRECT :: 2
l00eOO0e COR.I;:ECT ::: 1
.OOee0e~ COF.:RECT = £1

-1 0600(-:'0 CORRECT =-1
-1 000£tOO€! C"ORRECT =-2
-2. 000000& CORRECT -= -3
-1 £100SWB CORRECT = -4-
-4. 00000€'>-t CORRECT :: -5
-5. 0e0~J02 CORRECT :: -6
-6.ette0~eQ CORRECT ;- -7
-7. 0000f201- CORRECT = -8
-8. 00001301 CORRECT :: -Q

~

REHOY

-35-

TABLE 12

COMPARISON OF MITS AND NORTH STAR STRING FUNCTIONS OPERATING

ON A 20 CHARACTER STRING

MITS

LEFT$ (A$,9)

RIGHT$ (A$,18)

MID$ (A$,9,l)

North Star Equivalent

A$(l,9)

A${18,20)

A$(9,lO)

The North Star version is technically equivalent to that of MITS,

with perhaps a little more conciseness on the part of North Star.

However, the lack of dimensioning capability leads to programming

difficulty.

Another difference between the two BASICS is the allowed form for

variable names. Having worked largely with FORTRAN IV and MITS

BASIC, the use of variable names such as II TEMP II , "THiE lI and so on

is a convenience one has difficulty giving up. In North Star

BASIC (and that on the Xerox Sigma 7/9), variable names are

res tri cted to <1 etter> <opti ana1 number> formats. However,

perhaps asking for a BASIC which behaves like a FORTRAN interpreter

is unfair. Or is it?

Both MITS Extended BASIC and North Star BASIC have editing capabilit

(Table 10). Those employed by North Star are explained in the North

Star BASIC manual. The two editors are different. and on the whole

the MITS version is perhaps more convenient. The differences are:

-36-

• The North Star edit structure allows one to copy the old line

(with changes) into a new line having a different number. This

might be considered North Star's answer to MIlS's "PRINTUSING"

format tool which North Star does not have.

• In the MITS version t by typing 7SA after the edit command t the

old line will be copied up to the 7th occurrence of the character

A. There is a similar convenience for changing groups of

characters. The North Star edit allows one to search for the

!!!!! occurrence of a given character only.

• In the North Star editing system typing a "CONTROL-Oil plus a

character presumably copies the old line up to the specified

character.

• The North Star editing system is physicallY more difficult to

use than that of MITS, requiring two separate keys to be

pressed simultaneously. Typing "CONTROL-N" with one hand

gives me a charley horse of the forth finger.

MITS Extended BASIC is an exceptionally good piece of software,

and t in the comparison given above, it significantly outperforms

North Star BASIC. This is true without consideration of the operations

which MITS has and North Star does not. See Table 13.

-37-

TABLE 13

ADDITIONAL MITS EXTENDED BASIC OPERATIONS

SWAP variables

TRACE program steps

ERASE variables

DELETE specified line number intervals (available in
new North Star versions)

MOD arithmetic

Integer division

Double precision (arithmetic, not functions)

Clear variables

WAIT

SPC(I) space printing

As mentioned earlier, North Star has provided a very well defined

patching structure for interfacing user I/O software drivers. This

is well documented and includes examples. The interfacing documentation

which comes with Processor Technology's video interface, VDM-l, is

equally well documented. Shown on Table 14 is a program written

in North Star BASIC which links the VDM-l to the North Star DOS,

which in turn links to North Star BASIC. Observe that statements

310 through 480 create a single string of 678 hexadecimal characters.

This string represents the VDM-l machine language routine which is

loaded into memory in type size groups starting at 0800 Hex

(001,000 Octal), running upwards for 339 bytes.

-38-

After loading this driver, the program then "po kes"("fills"

in this language} memory changes to accommodate the MITS SS-SIO

status bit structure (low active; least significant bit in status

byte). The DOS output routine is then patched to the VDM-l driver

by using a call, moving the outputted character to the accumulator,

and making a return.

Running this program will automatically set up the VDM-l such

that all subsequent output will be to the video display. The

video driver can be later escaped by reconstructing the original

~atches. This could be done using a "repair" program.

This load program can also be stored as a file on the North Star

disk as part of a routine operating system. For convenience.

corresponding system diskettes could start with the following

file structure:

-39-
TABLE 14: NORTH STAR BASIC LOADER FOR PROCESSOR TECHNOLOGY'S VDM-1

10 REM ~~~~~~.~~ •••~••~••~.~~~~~~
20 f::~Et'1 1..JDt'1-1 t"IEt'10R'y' LOADER
~:O RE~1 '(1:::~3(1 TO 1)9:E:6 U:3ED
4(1 REt'1 ;.:.:~ ~~~~.~~~~.~~:9.)«*-:O:~9.iO'_~:o::q;i9:~

5(1 GOSUE: ::;:00
60 FOR 1=1 TO 439
70I==2;r,.;I
80 B$=A$(J-1,J-l)
Y~'1 GOSUE: 5~X1

H3€1 M=B;(I;16
11103 BS=A$ (Jp Jj ...·.G08IJ1:: 5103(1
12€1 ~1:;;::1'1+B

13f1 FILL 8;(1;256+I-l,M
14€1 t'~E>~T I
15(1 RE~1 ADJUST I...II1t'1LOAIt STATU:::
160 FILL (8;(1;256+70),194
170 FILL (S~256+125),194

18£1 FILL (S;(I;256+153),194
190 FILL (9~256+170),001

2~30 REJ"'1 PATCH ~JDJ"'1 TO DOS CRLL-
210 REM CALL 0800(HEX)
220 FILL 10496,205
230 FILL.10497,0u0
240 FILL 10498,008
250 REM AFTER RETURN, MOVA,~

260 FILL 10499,120
270 REM F.:ETURN TO DOS HHERIOF.:
280 FILL 10500,201
290 END
30(1 DH1 A$ (1000)
310 AS=""
:;:20 A$=A$+"22B70921~X1(n):;:'3:31 F0(19E5D5C5F5CD1A08F1Cl D1E1F92AB709C9"
330 A$=A$+"78E6 7FFE7F'C8FE5FCA2lJ~19FE51::C:ACE08FE5DCA41(19FE5CCA810::: II

34~j A$=A$'+ II FEOIlCA1509FE20D8F53AB6~396 72E8(1CDA7(19CAE,E 08CDAC 09CD52 II
350 A$=A$+"08C36D08FE3AD27708FE31 DR770:3E6(1F4FAF370DCA690817C361"
360 A$=A$+ II 0:332B609C';'2E:7CJ::7C2€,1I0E:F 1C30C1(1'3FE20 C€1CDA709CA7A08C9"
37t1 A$=A$ + II CD 150921BA087EFE~08CA9608£5CD0009E12~:C:38708CDA7 09CA96 II
:;:80 As=A$+"08CDAC09FE3AD2E:408FE2:1DRB408F5CD(1009CD1509F1C:;:520821 II

3';"0 A$=A$+ IICC08C387~18204E45572.053504545442028312D39293F202£15821II·

4~X1 A$=Ft$+"0lZ1CC7CCE.04362£12:;:BCC21l4€18AF32B40932B50932B2092F32B309II
410 A$=A$+":3EOF32B109CDF21Z18C93AB4f190707070721B5lZ19B6D3C8C94F3AB2 11

420 A$=A$+ II f19 473AB 10':;'CD70(1':;' 713A.B2093CFE40C22~:093RB2 £19473AB109CD
4::::0 A$=A$+II'3F09CII52£1997:32B209473RB.lf19C383093AB209473AB109CD9F09
4*3 A$=A$+1I2B3620f153AB109C:;:83(19::::AB3092F:;:2B3(19~:RB209473AB109C::::83

45(1 A:::=A$+"0921B509E57E349E,010€n30CD70090140207(12C0DC2E,209E17EEE,
46~3 A$=A$+ II 0F77C3F208E,F3AB50985l1F0F6FEf. t13CE,CC E.77DEE,C08(16F" C9E60F
470 A$=A$+" 32B1u'3CD70097832B209:3A B30'::aB77ECA9B09F68077C9EE. 7F7?C9
4:::0 A$=A$+IICD70097EE67F77C'3DB0l1E640C9DB01E67FC9~30000l0(10006.11

490 J;:ETUf:::N
5~30 B=(1
51121 IF B$="A" THEN B=10
520 IF. B$="B" THEt~ B= 11
530 IF B$=IIC" THEN B=12
54121 I F B$ = " II" THEt·~ B= 1:3
550 IF B$="E" THEN B=14
·56(1 IF B$="F" THEN B=15
570 IF E:>=10 THEN RETURN
5:::0 B=I...lAL CE:$) ...·.F.:ETURt~
READV

Name

Directory

DOS

BASIC

VDM

-40-

Blocks

3

10

40

8

This means that an overhead of 58 blocks (out of 350) is carried

for the sake of operating convenience. Other users may have

different values and not want to have such file duplication.

-41-

6.0 CONCLUSIONS

The previous sections have served to demonstrate how much power

and convenience is available through.the use of a micro-disk

system such as that provided by North Star.

If there were a single area in the North Star system to be examined

for improvement, it would be the software beyond the DOS. Besides

having the logarithm error, North Star BASIC is generally .not as

capable as MITS Extended BASIC, which must be considered a

benchmark. North Star has a good piece of hardware which is

partially sold by its software back-up, which at this point is

good, but not great. Specific areas for improvement and expansion

of their BASIC interpreter are:

• Fix logarithm error (apparently done in the latest releases)

• Provide string variable subscripting

• Include on on-line double precision option

• Add starting statement choice to "renumber"

• Allow line width control of all printing

• Use single key edit commands

• Allow longer variable names

• Implement a "trace" for debugging

-42-

The general software frontiers presently being pushed are a BASIC

compiler and PASCAL. The features which are important for a

BASIC compiler are:

• Compile/Interpret option for program building and debugging

• Disk save and load functions for object code

• Fast running object code (which will end the argument that
BASIC 1s inefficient)

t Disk oriented linking of programs in both compile and interpret*

modes.

*The PASCAL software is just now becoming available, and will be
considered in a later report.

