

LEADERSHIP IN COMPUTER PERIPHERALS

100,000 DAY CLOCK

OPERATING MANUAL

100,000 DAY CLOCK OPERATING MANUAL

© 1978 by MOUNTAIN HARDWARE, INC.

MOUNTAIN HARDWARE'S

100,000 DAY CLOCK

FOR S-100 BUS COMPUTERS

INTRODUCTION1
USING THE CLOCK2
BATTERY INFORMATION
SOFTWARE ROUTINES8
SETTING THE CLOCK
THEORY OF OPERATION20
IMPLEMENTATION
SCHEMATIC24
PARTS LIST25
WARRANTY

INTRODUCTION

Mountain Hardware's 100,000 Day Clock is an accurate time piece for your computer. It will keep track of time in 100 microsecond intervals, up to 100,000 days. Advanced Complimentary Metal Oxide Semiconductor (CMOS) circuit draws less than 2 mA, which allows the clock to be run off a 9-volt battery for up to four days while the computer is shut down or if AC power fails.

The Clock uses 15 I/O ports for the time plus one I/O port to set the interrupt function. Using DIP switches, the user can assign these ports to any 16 consecutive 8080/Z-80 ports. The Clock is easily set by entering BCD digits one at a time at each time port. The moment you enter the first digit, the Clock stops. Then you enter the remaining digits. The Clock starts again on the first "read" command. A "write protect" switch prevents the Clock from being accidentally stopped or changed.

By using the interrupt feature of the Clock, activities relating to time of day may be preformed at preprogrammed intervals without interfering with the normal operations of the computer. You may program interruptions on any change in a Clock digit; that is, at intervals of 100 microseconds, 1ms, 10ms, and so on to 1 hour, 10 hours, etc. The board can be easily used with most BASICs. However, with our Introl BASIC, time is especially simple to set, compare, check, display and print.

Two software packages are included that expand the capabilities of the Clock board. One package gives calendar information such as month, day, year and day of week. The other package allows multiple interrupts, at any time interval, or absolute time.

The 100,000 Day Clock board, because of all the features included on one board, will enhance the power of your computer and add to it the dimension of time.

USING THE CLOCK

The 100,000 Day Clock has been designed to work in virtually all S-100 computers. It will work with machines running at speeds up to 4 MHz, which means it will operate with the newer and faster microprocessors.

When handling the clock board, care must be taken to avoid static discharges on the board, as this can cause damage to the CMOS (Complimentary Metal Oxide Semiconductor) circuitry. Hold the board on the sides when handling, and store the unit on static-proof foam when out of the computer. CMOS has very high input impedances and properly placed fingers on the back side of the board can stop the clock or accidentaly change the time. General rule is to handle as little as possible, and then only on the sides.

BATTERY INFORMATION

The battery supplied with the clock board is a rechargeable NiCad battery that powers the clock when the computer is turned off, or when the power fails. The battery will continue to power the CMOS circuitry on the board and the correct time will not be lost. The battery has the capacity to run the clock for 4-5 days if it is fully charged.

To fully charge the battery, power must be applied to the clock for at least 4 days; as it is a slow charge. This is designed to maximize the life of the battery. As a general guideline with plenty of margin. Let the battery charge two hours for every hour of use.

When the computer power is turned off, the board may be removed from the computer as long as the battery is in place and charged. The clock will continue keeping time. Hence, the board may be "time-shared" between two computers or set aside for awhile if its space is needed for another peripheral in machines with few expansion slots.

The battery's life should be several years and should be replaced if its performance drops significantly.

 $^{\rm A}$ 9 - 12 volt adapter may be plugged into J1. This will keep the battery charged and the clock running even when power is turned off from the computer. This will allow very long down times, and also keep the battery charged in the event power should go off in the building.

The adapters are available from Mountain Hardware.

SETTING THE FREQUENCY

Your 100,000 Day Clock has been factory assembled, burned in and tested. The 1.0000 MHz time base has been accurately set to within .001%. Vibrations or extreme temperatures can cause slight changes to the time base and may produce noticeable errors. If these errors are noticed, or if you desire to set this frequency more precisely for your environment, an accurate frequency counter and a small non-metallic screwdriver are required.

Connect the frequency counter with the ground lead to the screw on the regulator and the positive lead to Pin 10 of U6. Adjust C12 for a frequency as close to 1.000000 MHz as possible. Be sure the clock is at the same operating temperature as its normal environment.

SETTING THE PORT ADDRESS

The clock board occupies 16 port addresses on the S-100 system bus. Changing the switches labelled A4, A5, A6 and A7 can change the clock to respond to different port addresses. Table 1 shows the relationships between switch positions and addresses.

, PORT	ADDRESSES		SWITCH	POSITIO	N
DECIMAL	HEX	<u>A7</u>	<u>A6</u>	<u>A5</u>	<u>A4</u>
0 - 15 16 - 31 32 - 47 48 - 63 64 - 79 80 - 95 96 - 111 112 - 127 128 - 143 144 - 159 160 - 175 176 - 191 192 - 207 208 - 223 224 - 239	0 ~ F 10 - 1F 20 - 2F 30 - 3F 40 - 4F 50 ~ 5F 60 ~ 6F 70 - 7F 80 - 8F 90 - 9F A0 - AF 80 - BF CO - CF DO - DF EO - EF	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 1 1 1 0 0 0	000110000110000000000000000000000000000	01010101010
240 - 255	FO - FF	j	i	i	ĭ

TABLE 1

For port selection purposes, a 1 (one) means the switch is closed (on) a 0 (zero) means the switch is open (off).

Address your clock to a set of ports that are not presently used by your other peripherals. If possible, we recommend that you use ports 32-47 (20-2F HEX) to standardize with our software.

SETTING THE CLOCK

The following table shows the significance of each of the 16 ports assigned. Obviously, if you assigned your board with the switches set for 32-47 decimal, your lowest port address for the clock would be 32 and the highest would be 47.

PORT ADDRESS	PORT SIGNIFICANCE	TIME RANGE
Lowest Lowest +1 Lowest +2 Lowest +3 Lowest +4 Lowest +5 Lowest +6 Lowest +7 Lowest +8 Lowest +9 Lowest +10 Lowest +11 Lowest +12 Lowest +13 Lowest +14 Highest	100 µs (microseconds) 1 ms (milliseconds) 10 ms 100 ms 1 second 10 seconds 1 minute 10 minutes 1 hour 10 hours 1 day 10 days 1,000 days 10,000 days Interrupt port	0-9 0-9 0-9 0-9 0-9 0-5 0-9 0-2 0-9 0-9 0-9 0-9 0-9 0-14 (0-E Hex)

TABLE 2

Each digit of time is available by reading the proper port number. To set the clock, the write protect switch must be set in the WRITE position (the switch in the on position). When in the WRITE PROTECT position, it is impossible to write to the clock, except to set interrupts.

To set the clock OUT instructions are used to set the digits to the proper time. When an OUT instruction is executed to the clock, the clock stops. This allows you to set all the digits correctly without fear of the clock changing. Therefore, the recommended procedure is to set all the digits correctly for a minute or two ahead of time and wait for the real time to catch up with the clock. At the precise time, execute a read (INP) from one of the clock's ports. This starts the clock running.

As can be seen from the time range column in the last table, the clock keeps "normal" time for seconds, minutes and hours. The clock board will keep track of seconds up to 59 and then carry back to 00 instead of 60. The same is true of minutes. Hours count up to 23 and then carry back to 00. Days count from 0 through 99,999. The clock will need to be reset for time after 99,999 days, 23 hours, 59 minutes, 59.9999 seconds. The exception is, if you desire to change the clock for Daylight Saving time, if used in your area.

Once the time has been set, place the WRITE PROTECT switch back in the WP position. This places the clock in a state where the time cannot be accidentally changed.

READING THE CLOCK

The clock is read by using input commands from the ports addressed on the clock. See the chart on the previous page to find the significance of each port. The lower four bits of each word contain the BCD digit of time.

A potential problem can occur when reading the clock. If you are reading all the digits in order to find the time, the clock may change after you have read several but before you have read them all. The clock is changing every 100 microseconds. If the time is 23 hours, 59 minutes, 59.9999 seconds when you start reading and changes to 1 day, 00 hours, 00 minutes, 00.0000 seconds, a significant error will be found. Admittedly, this occurs rarely but can happen in lesser degrees to any port. Two solutions are available:

- 1. Read the clock twice. If the time has not changed then the time is correct. If it has changed, the later time is correct.
- 2. The clock board has a provision to tell the user that the time has changed since the clock was last read. Bit 7 of each input time (the bottom 4 bits contain the BCD digit of time) is a 1 (one) if the time has not changed since the last read. If it is a 0 (zero) then the time has changed by at least 100 microseconds since the last read. Consequently, the time can either be corrected with software or by re-reading the clock.

The speed of your computer determines how many instructions can be executed in 100 microseconds (when the clock has changed). For fast timing considerations, all of the digits should be read in order and stored before any manipulation is done. This will improve the chances of reading the clock without it changing. Of course, if you are not interested in 100 microsecond intervals the problem is not as significant and errors are less likely.

USING INTERRUPTS

The 100,000 Day Clock board also has the capability for generating hardware interrupts. The hardware supports one interrupt level. More can be handled in software.

The interrupt feature is enabled by sending a value of 1X in hexadecimal to the highest numbered clock port where X represents a digit from 0 to E. This corresponds to the clock digit whose transition will generate an interrupt.

In other words, if the clock is address for ports 20 through 2F Hex and a value of 14 (Hex) is sent to port 2F, then an interrupt will be generated every second since a 4 represents the "seconds" digit.

Number output to the highest port on the clock board		Interrupt will occur every:
<u>DECIMAL</u>	HEX	
16 37 18 19 20 21 22 23 24 25 26 27 28 29 30 0 - 15	10 11 12 13 14 15 16 17 18 19 IA 19 IA 1B 1C 1D 1E	100 microseconds 1 millisecond 10 millisecond 100 millisecond 1 second 10 seconds 1 minute 10 minutes 1 hour 10 hours 1 day 10 days 100 days 1,000 days 10,000 days CLEARS INTERRUPTS

TABLE 3

To clear the interrupt a 00 through OE (Hex) may be output to the interrupt port. Also hitting the reset button on your computer or powering up the computer will clear the interrupts.

The trace coming off of Pin 75 on the S-100 bus may be cut if it is desired to not have RESET clear the interrupt feature.

Several types of interrupts are available on the clock board. The unit is shipped set up for a re-start type interrupt. This means that whenever an interrupt occurs from the clock and the computer acknowledges it, an 8080-type re-start instruction is forced onto the S-100 bus. The switches labelled R1, R2 and R3 determine which re-start address is presented to the computer. When a re-start instruction is performed the computer calls an address as shown in Table 4.

RESTART A	DDRESS	RESTA	RT SWI	TCHES
DECIMAL	HEX	<u>R3</u>	R2	RI
0 8 16 24 32 40 48 56	0000 0008 0010 0018 0020 0028 0030 0038	0 0 0 0 1 1 1	0 0 1 0 0 0	0 1 0 1 0 1

TABLE 4

Software can then be placed at the re-start location to service the interrupt.

The other type of interrupt on the 100,000 Day Clock board is a Vectored Interrupt. This is available for users of a vectored interrupt controller. To use this feature, the trace between I and PINT in the lower-left corner of the clock should be cut and a jumper placed between I and one of the VI pins labelled VIO-V17 and also in the lower-left corner of the clock board. For more information on the vectored interrupt see the details with your Vectored Interrupt board.

With all interrupts care must be taken to avoid conflicts between peripherals requesting an interrupt.

SOFTWARE ROUTINES

SETTING THE CLOCK FROM BASIC

Setting the clock is as easy as outputting the desired time digits to the corresponding digits of the clock.

Here is a program to do just that, setting the hours, minutes and seconds.

- 10 C = 32: REM CLOCK'S LOWEST PORT NUMBER
- 20 PRINT "ENTER TIME AS H,H,M,M,S,S"
- 30 INPUT H1, H0, M1, M0, S1, S0
- 40 OUT C+9, H1: OUT C+8, H0: OUT C+7, M1: OUT C+6, MO
- 50 OUT C+5, S1: OUT C+4, S0
- 60 X=INP(C): REM START CLOCK AGAIN
- **70 END**

An assembly language program is just as simple. Here is one which sets the time to 12:30:15.

MVI A, ? : Tens of hours

OUT CLK+9

MVI A,2 : Hours

OUT CLK+8

MVI A,3 : Tens of minutes

OUT CLK+7

MVI A,0 : Minutes

OUT CLK+6

MVI A, 1 : Tens of seconds

OUT CLK+5

MVI A,5 : Seconds

OUT CLK+4

INP CLK : Start clock

READING THE CLOCK - PRINTING THE TIME

Since the clock stores the time on-board in the form of BCD digits, displaying the time is very easy. The lower 4 bits of each clock digit hold the actual information. Here is a basic program which prints the time.

```
10 C=32: REM CLOCK'S LOWEST PORT ADDRESS
20 FOR I = 9 TO 4 STEP - 1 /
30 D=INP(C+I): REM GET A DIGIT
35 D=D - INT (D/16)* 16: REM REMOVE TOP 4 PITS
40 PRINT D;: REM PRINT DIGIT
```

50 IF 1=8 OR I=6 THEN PRINT ":":

60 NEXT I

70 PRINT

80 END

CALENDAR ROUTINES

This software package was developed to enable you to translate the day information on the clock board (0 - 99,999 days) to date information in the form of month, day, year, day of week.

Using this software is simple:

- 1. Set location "CLKPRT" (4400) to the lowest port address of your clock board.
- 2. Call "READ" as a machine language subroutine. (Location 4200).
- Read the returned information from RAN storage area.

```
MONTH is the month (1 = JAN, 2 = FEB...) (Location 4402). DATE is the day (1 - 31) (Location 4403 YEAR is the year (1978...) (locations 4404, 4405-Low, High). DAY is the day of week (0 = SAT, \frac{1}{2} = SUN...) (Location 4401).
```

The above addresses are given in hex and refer to the source listing of the calendar routines.

The calendar routine assumes that the DAYS digits of your clock board have been set to the number of days since December 31, 1977. That is, January 1, 1978 is DAY 00001.

That is all there is to it.

Here is a BASIC program to perform this task:

```
L = 17408: REM START OF RAM STORAGE FOR CAL ROUTINES
POKE L, 32: REM CŁOCK AT 32 (LOWEST PORT # ON CLOCK)
Y = USR (16896): REM CALL ROUTINE
PRINT PEEK (L+2); "/", PEEK (L+1); "/";
PRINT PEEK (L+4) + 256*PEEK (L+5)
```

This prints the date as MM/DD/YYYY.

			Carenaa	DOLEMATE
		;; 100,0	000 DAY (S FOR MOUNTAIN HARDNARE CLOCK/CALENDAR BOARD (S-100)
		- 	-0 5862 ?	ARD \-3-16-78-
		ሚ.ፓጥፒጥ	'Calenda	ar Software'
-4-2-00 =	ROMBEG	- -E0U	-04260H	; BESINNING OF ROM STORAGE
4300 =	RAMBEG	EQU	04400#	BEGINNING OF PAM STORAGE
4200		ORG	ROMBEG	
	;; MAIN READ:	ROUTINE	'READ'	HERE
-4200 ·E5 ···				; SAVE REGIS
4201 D5				
4202 C5		PUSH	8	
4203 ZIBAU/-			.H'12/8	;SET INITIAL YEAR
4200 220444	;;	SHLD	YEAR	;STORE IN 'YEAR'
	<i>) </i>	-READ- D-TO	ንፐጥና	M ·CLOCK ·BOARD ·INTO ·< HL>······
	; ;	AS A BIR	NARY NUME	BER FROM 0 TO 32767.
	;;			
4209 210000		-EX:	H ; 0 /	CLEAR RESULT NUMBER
420C 3A0044		LDA	CLKPRT	:FIND OUT WHERE CLOCK LIVES
420F C60E		ADI	OEH	; ADD OFFSET TO LOOK AT DAYS
42-11 4F	· · · · · · · · · · · · · · · · · · ·	-HOV -	C, 8	; KEEP IN C FOR INP ROUTINE ; FIVE DIGITS HATH CLOCK
4212 0605		MVI	8,5	; FIVE DIGITS HATH CLOCK
4214 CDB142	-READ2:	CALL	OGMI	READ CLOCK PORT
4217 EKOE		7 N 7	Opu	; MASK ALL EVIL
4219 54		VOM	D,H	;SET DE=HL
4219 54 -421A 5D		MOA	E, t	
421B 29		DAD	H	;SET HL=HL*10
421C 29 -421D 19		DAD	H	
421D 19 421E 29		DAD		
421F 85			H T	;PLUS DIGIT FROM CLOCK
-4 2 20 EF			1.78 ····	, PEGS DIGIT FROM CEOCK
4221 D22542		JNC	•	; TAKE CARE OF CARRY
4224 24		INR	H	
	READ3:	DCR	· C · · · · · · ·	PREPARE TO GRAB NEXT DIGIT
4226 05		DCR	В	; MORE NUMBERS TO MUNCH?
4227 C21442		JNZ	REAC2	; MORE NUMBERS TO MUNCH? ; YEP.
422A 22054&				; DONE READING CLOCK. SAVE.
				OF YEARS, ADD ON TO YEAR
	;;	SEE HOW	MANY DA	YS INTO THIS YEAR
422D -010200-				; LPFLG:=0, LPCNT:=2
4230 116D01	ABBAI:	LXI	D,365	; <de>:=365</de>
4233 78 -4234 B7		MOV	A, B	; CHECK LPFLG
4235 CA3942				
		INX	noon2 D	; <de> OK IF NOT LEAP YEAR :ELSE MAKE <de> = 366</de></de>
-4239 E5		PUSH	·· ···································	; ELSE MAKE <de> = 366 ; SAVE # DAYS LEFT</de>
423A 7C		MOV	A,B	COMPARE HL-DE
423B 92			D	

```
CP/M MACRO ASSEM 2.0 #002
                                 Calendar Software
 423C C24142
                         JNZ
                                  2171
 423F 7D
                         VOM
                                  A,L
<del>--4240 93</del>
                        ~ auz~
                                 E. . ...
 4241 F5
                         PUSH
                                 PSW
                 ZIT1:
                                         ;SAVE FLAGS
 4242 7D
                                         ; <HL>:=<HL>-<DE>
                         MOV
~ 4243 93
                         ŜŪŚ
                                 E 
 4244 6F
                         MOV
                                 L,A
 4245 7C
                         MOV
                                  A, B
 4246 9A
                         SBB
                                 Ď
 4247 67
                         MOV
                                 A, H
 4248 F1
                                        ; RESTORE FLAGS FROM COMPARE ; CARRY SAYS: DE>HL
                         POP
                                 PSW
 4249 DA6642
                         JC
                                 ABBA3
 424C CA6642
                         JΖ
                                 ABBA3 ; ZERO SAYS: DE=HL
 424F 0600
                         MVI
                                 B,0
                                         ;CLEAR LPFLG
                         POP
 4251 Fl
                                 PSW
H
                                         ; CLEAR STACK FROM OLD (HL)
 4252 E5
                         PUSH
                                          ;SAVE THIS <HL>
 4253 2A0444
                                 YEAR
                        「ドドドロ
                                         ; <YEAR> := <YEAR>+1
 4256 23
                         INX
                                 H
 4257 220444
                                 YEAP
                         SHLD
                                 H ; RESTORE THIS (HL)
 425A El
                         POP
 425B 0C
                                 A,C ; IF (<LPCNT>+1
03H; CLPCNT> AND 3)=0, THEN
                         INR
 425C 79
                         MOV
 425D 2603
                         ANI
 425F C23042
                         JNZ
                                 ABBAI
 4262 04
                         INB
                                 \mathbf{B}
 4263 C33042
                                 ABBAl
                         JMP
 4266 Dl
                 ABBA3: POP
                                          ;GET LAST <HL> VALUE INTO <DE>
                 ;;
                         <YEAR> NOW HAS CORRECT YEAR.
                 ;;
                         NOW CALCULATE MONTH, DAY-OF-MONTH.
                 ;;
                 ; ;
 4267 ÚE01
                                C,1
                         MVI
                                         ; <MONTH>:=1 INITIALLY
 4269 21FC42
                         LXI
                                  H, MTBL ; <HL> POINTS TO TABLE OF DAYS
 426C D5
                 ABBA4:
                         PUSH
                                         ;SAVE <DE> (DAYS)
                                 Ω
 426D 7E
                         MOV
                                 A,M
                                         ; <DE>:=<DE>-<M(<MONTH>)>-
 426E E5
                         PU34
                                                 (IF <MONTH>=2, THEU
                                 H
 426F 6F
                         MOV
                                 L,A
                                                   LPFLG, ELSE U)
 4270 79
                         MCV
                                  A,C
 4271 FE02
                         CPI
                                 2
 4273 7D
                         MOV
                                 A,L
 4274 C27942
                         JNZ
                                  ABBA5
 4277 80
                                  В
                         ADD
 4278 őF
                         VCM
                                 L,A
 4279 7A
                 ABRAS:
                              A,D
                         MOV
                                         ; DO DE-OL COMPARE____
 427A B7
                         ORA
                                 Α
 427B C28042
                         JNZ
                                  ZIT2
 .427E 7B
                         MOV
                                 A,E
 427F 95
                         SUB
                                 Ĺ
 428U F5
                 ZIT2:
                                 PS9
                         PUSS
                                          ; SAVE FLAGS!!!
.4281 7B
                         VOM
                                 A, E
 4282 95
                         SUB
                                 L
 4283 5F
                         MOV
                                 E,A
 4284 7A
                         MOV
                                 A,D
 4285 DE00
                         SBI
                                 0
 4287 57
                         MOV
                                 D,A
 4288 F1
                         POP
                                 PS:A
                                          ; RESTORE FLAGS
                                -11-
```

```
CP/M_MACRO_ASSEM_2_0 #003 Calendar_Software
4289 El
                 POP
                       Ħ
-428A - DA 9 6 4 2 ----
                JZ ABBA7 ; ZERO SAYS <DE> JUST RIGHT INR C ; <MONTH>:=<MONTH>+1
428D CA9642
4290 OC
                POP PSW ; CLEAR STACK OF OLD (DAYS)
JMP ABBA4 ; PROCESS MORE
<del>-4291 -23 -----</del>
4292 Fl
4293 C36C42
MOV A,L ;LOOK ONLY AT LO-ORDER BYTE STA DATE ;WHICH IS DAY-OF-MONTH
4297 7D
4298 320344
429B 79 ----
               STA MONTH ;STORS IN APPROPRIATE PLACE LHLD DAYS ;GET DAYS IN CLOCK
429C 320244
429F 2A0644
-42A2 EB -- XCHG --- PUT IN DE-
               LXI H,7 ; DIVIDE BY SEVEN CALL DIVIDE ; DO DIVIDE
42A3 210700
42A6 CDC642
               -- MOV --- A, L --- ; GET LO REMAINDER
-42A9 7B- ....
                 STA DAY ;STORE DAY-OF-WEEK
42AA 320144
          -;; --- PROCESSING-FINISHED, RESTORE
              -- USER'S REGISTERS AND RETURN
           ;;
POP D
42AE Dl
42AF El
-4-2-B0 -----
               INDO:
                             GET INPUT FROM PORT C
CALL INDO2 ; GET BYTE, FROM PORT POP H ; RESTORE < HL>
42B2 CDB742
4285 El
-4286 C9 ----- RET ---- RETURN TO CALLER
42B7 2100C9 INDO2: LXI H,RET*256
42BA E5 PUSH H ; PUSH 'NOP, RET' ON STACK
MVI L,IN
PUSH H : ; PUSH 'IN <PORT>' ON STACK
42BC 2EDB
 42BE E5
DAD SP ; <HL>:=<SP>
POP PSW ; <SP>:=<SP>+2
 42C2 39
 42C3 F1
-42C4--F1 ------
              PCHL
 42C5 E9
                             ; JUMP TO STACK AND RUN IT!
            ;;
          RETURN <DE>=RESULT, <HL>=REMAINDER.
CLOBBERS A,D,E,H,L,F/F'S
            ;;
            ;;
 42C7 220844 STT
 77
                 SHLD DVTMP1
-42CA 210A44 ---- EXI --- H, DVTMP2
                 MVI M,11H
EXI B,0
 42CD 3611
 42CF 010000
-4202 C5 --- PUSH- В
 42D3 7B
          DIVID2: MOV
                      A,E
 42D4 17
                  RAL
                  MOY
 42D5 5F
                       E,A
                      -12-
```

983-1BM-324

CP/M MACRO ASSEM 2.	0 #004	Calendar Software
42D6 7A ~42D7 17	MOV	A,D
4207 17	MOV YAL	D X
4208 37 42D9 35	DCR	D,A M
-4209 33	POP	H
420A E1 420B C2E042	JHZ	DIVID3
42DE C1		B .
42DF C9	505	D
	RET	n ()
42E0 3E00 51V	'ID3: MVI	A,0
	ACI	0
4264 29	DAD	B
42ES 44	VCM	В, Н
42E6 85	ADO	L
42E7 2A0844	LHLD	DVTMP1
42EA 95	SUS	L
42EB 4F	MOV	
42EC 78	VOM	A, B
42ED 9C	SBB	В
42EE 47	MOV	В,А
42EF C5	PUSH	3
42F0 D2F542	JNC	DIVID4
42F3 09	DAD	В
42F4 E3	XTHL	
	/ID4: LXI	H, DVTMP2
42F8 3F	CMC	
42£9 C3D342	JMP	DIVID2
;;		
;;		OF DAYS IN EACH MONTH
;;	STARTI	NG WITH JANUARY.
;;		
42FC 1F1C1F MT		31,28,31
42FF lelfle	DB	30,31,30
4302 1F1F1E	DB	31,31,30
4305 lflelf	DB	31,30,31
1.7		
;;		THE ABOVE MAY RESIDE IN ROM.
77.	THE FO	LLOWING MUST RESIDE IN RAM.
7,7		
	MEND EQU	\$;LAST ROM ADDRESS
4400	ORG	RAMBEG ; RAM STARTS HERE
•	(PRT: DB	209 ; SET TO CLOCK ADDRESS
4401 DAY	(: DS	1 ;DAY-OF-WEEK (0=SAT,1=SUN)
4402 MON	NTH: DS	1 ; MONTH-OF-YEAR (1=JAN, 2=FEB)
4403 DAT	re: DS	1 ; DAY-OF-MONTH (1 TO 31)
	AR: DS	2 ;YEAR (1978)
4#05 DAY		2 ; TEMP STORAGE FOR DAYS SINCE
	CMP1: DS	2 ; TEMP FOR 'DIVIDE' 12/31/77
	TMP2: DS	1 ; TEMP FOR 'DIVIDE'
440B	END	
<u> </u>		
B>		

INTERRUPT CONTROL SOFTWARE

The Mountain Hardware Time Interrupt Monitor/EXECUTIVE (TIME) is a software package designed to enable you to set up your computer to perform tasks while you use it for other things. You can program something to happen, say, every 15 seconds, or once after first waiting 13 days, 21 hours, 2 minutes and 12 seconds, or up to 255 days in 1-second increments. The use of the software is easy.

Here's the way 1t works. Every second the clock will generate an interrupt. This will be in the form of a RESTART instruction pushed on the bus. The 8080 will then go to the restart location and find a jump to the interrupt control software. The software then looks at a table you helped generate earlier that specifies a time when you wanted a certain task to be performed (you gave the task starting address). The time is in the form of an interval from now. For example, go do the task in 3 days, 2 hours, 10 minutes and 3 seconds. The task may be done once only or repeated after each time interval. If the proper time is not reached for task one, task two is looked at. Up to 20 tasks may be defined. If the time hasn't come for any of the tasks, a return from interrupt is performed. has come for a given task, that task is performed.

The following steps must be taken to use the interrupt software:

- 1. DISABLE INTERRUPTS.
- 2. PUT ØØH into each byte of the task table. (From Address 4ØFl to 41FF would be adequate.)
- 3. PLACE A JUMP TO 4000 at the restart location for which you have the clock board set up. (For a Restart 1, place C3 00 40 at Location 0008.) This causes a jump to 4000 whenever an interrupt occurs (every second using the MHI Interrupt Control Software).
- 4. DETERMINE WHAT YOUR TASK ADDRESS IS; i.e. where you want to do your task. Place the task software there; i.e. what it should do when the proper time comes. Do this for each task you may have up to 20 different tasks at 20 different times. Each task software may be at a different address.
- 5. LOAD in the Interrupt Control Software. (It may be re-assembled for any address if 4000 is not convenient.)

Steps 2-5 may be done in any order.

- 6. Now for each time a task is desired, do the following steps.
 - a. REG B = Hours Reg C = Days PUSH B
 - b. REG B = Seconds REG C = Minutes PUSH B
 - c. REG B = Task Address (Hi Byte) REG C = Task Address (Lo Byte) PUSH B
 - d. REG B = (0 = Static, l = Periodic)

 Static means interrupt occurs once
 after the time has elapsed.

 Periodic means the task is performed
 repeatedly after each time interval.
 - e. CALL SETTSK (4063). This sets up Task Table.
- 7. Once all the tasks are set up, the procedure can be started by these steps:
 - a. REG A = Number of tasks; 0 = None) STA 40F1 (TSKTBL)
 - b. REG A = 1 CALL SETALL ($4\beta B\beta$) Enables all tasks.
 - c. CALL OMJOB (40DC) Master Start.
 - d. REG A = 14
 OUTPUT REG A to the clock's highest port number.
 This starts one-second interrupts from the clock.
 e. ENABLE INTERRUPTS.
- 8. Then RETURN, or go off and do something else. Every second an interrupt will occur which will cause a jump to the Interrupt Control Software. It will look at the times you listed and if that much time has gone by, the task software will be performed.

NOTE:

- Your task software should contain a Return at its end.
 It need not save any registers.
- 2. Be sure that any software you are running has interrupts enabled if you want the clock to interrupt.
- 3. If you are using vectored interrupts, the instructions concerning Restart Locations should be changed appropriately for your vectored interrupt system.

The following routines will be helpful when using the Interrupt Control Software.

KILTSK (4ØA4)	Stops a task whose task number is in REG A.
LIVTSK (4ØAA)	Starts a task whose Task number is in REG A.
SETALL (4ØBØ)	Stops all task if REG A = \emptyset . Starts all tasks if REG A = 1.
RUNSTP (4ØE8)	Sets the Master Switch ON if REG A = 1. The Master Switch is handy if you have some of the tasks on, and some off, and then you want to temporarily turn off all interrupts. Using RUNSTP (or ONJOB/OFFJOB) you can turn off the Master and then turn it back on, and only those tasks that were on will be active.
ONJOB (4ØDC) OFFJOB (4ØE2) SETTSK (4ØC3)	Turns the Master Switch on. Turns the Master Switch off. Routine to set up tasks in task table.

Mountain Hardware S-100 Clock Software - TIME

The MHI Timed Interrupt Monitor/Executive enables the user of MHI's Clock/Calendar board to perform background task scheduling based upon defined time intervals. Entry points to the software permit allocation of new tasks as well as run/stop control for a particular task or set thereof. The executive maintains a table describing all on-line tasks. The format of this table is:

```
#0F1 =-> Number of entries, 0 means none
#0F2 =-> Master task-schedule-enable, 0 means disable
++[ Task running (1), or stopped (0)
++| Scratch (days)
++| Scratch (days)
++| Scratch (minutes)
++| Scratch (minutes)
++| Scratch (seconds)
++| Interval - Days
++| Interval - Hours
++| Interval - Minutes
++| User task driver - Lo-order address
++| User task driver - Hi-order address
```

The above '++[' sequence repeats for each task.

```
T.I.M.E. -- M.H.I. CLOCK INTERRUPT SOFTWARE
                                      4000
                                                        ORG
                                                                          4000H
  4000 F5
4001 C5
4002 D5
4003 E5
4004 21F140
4007 7E
4008 B7
4009 CA8E40
400C 32EE40
400F 7F
                                     INTRPT: PUSH
                                                                          PSW
                                                                                                                ;; SAVE ALL REGISTERS
                                                        PUSH
PUSH
                                                                           B
                                                                           D
                                                        PUSH
                                                                           Н
                                                                                                                      POINT TO # OF ENTRIES
LOOK AT THIS NUMBER
ANY ENTRIES ???
QUIT IF NONE FOUND
STORE THIS NUMBER
POINT TO RUN/STOP FLAG
LOOK AT IT
SET FLAGS
IF STOPPED, QUIT
BUMP PAST THIS NONSENSE
SAVE SECRET POINTER
                                                                          H,TSKTBL
                                                        VOM
                                                                           A,M
                                                        ORA
             CASE40
32EE40
23
7E
B7
CASE40
23
22EF40
                                                        JZ
STA
                                                                           ENDJOB
                                                                           NUMBER
                                                         XNI
                                                                           Н
   4010
                                                        MON
                                                                           A,M
  4010
4011
4012
4015
4016
                                                        ORA
                                                                           A ENDJOB
                                                        JZ
INX
                                                                                                                 2 2
                                                                           Н
                                                         SHLD
                                                                           TSKPTR
                                                                                                                     GET TASK BLOCK POINTER
LOOK AT RUN/STOP
RUNNING?
IF NOT, TO NEXT TASK
BUMP TO
SECONDS POSITION
# OF 59 COUNTS
COUNT THAT NUMBER
NOW LOOK AT IT
ANY OVERFLOW
NOPE, DO COMPARE
YEP, CLEAR THIS NUMBER
NEXT IN LINE
MORE 59 COUNTS?
DO TILL DONE
INC. HOURS
WHAT DID WE DO?
OVERFLOW?
IF NOT, DO COMPARE
CLEAR HOURS
  4019
401C
401D
              2AEF40
7E
B7____
                                                        LHLD
                                      DOTASK:
                                                                           TSKPTR
                                                        MOV
                                                                           A,M
                                                        ORA
                                                                          A
NXTTSK
D,5
D,5
E,2
M,0
60
  444457889BE012I5679CIEF03445676
              CA7740
110500
                                                        JZ
LXI
19
1E02
                                                         DAD
                                                         MVI
                                      INC59:
                                                         INR
                                                         MOV
                                                         CPI
                                                                           COMP
                                                         JC
                                                        MVI
DCX
DCR
                                                                           M,0
                                                                           Н
                                                                           INC59
                                                         JNZ
                                                                           М
                                                         INR
                                                                          A M
24
COMP
                                                                                                                ? ?
                                                         VOM
                                                         CPI
                                                        JC
MVI
DCX
INR
LHLD
                                                                          M,0
H
                                                                                                                       DAYS:=DAYS+1
FIND TASK BLOCK ADDRESS
                                                                           TSKPTR
                                      COMP:
                                                         INX
                                                                           Н
                                                         ХИĨ
                                                                           Н
                                                                          D,H
E,L
                                                        MOV
                                                        MOV
                                                                                                                ;; DE => TEMP. TIME
                                                         INX
INX
INX
                                                                           H
                                                                                                                      HL => SET TIME
FOUR TO CHECK
LOOK AT ONE VALUE
COMPARE WITH FINAL
                                                                           HB
                                                         INX
                                                                                                                ,4
                                                        MVI
                                      CMPNXT:
                                                        LDAX
                                                                           D
                                                        CMP
INX
                                                                          14
                                                                          D
                                                                                                                       BUMP POINTERS
```

```
4050 23

4051 05

4054 05

4055 7E

4058 23

4058 236

4058 6F

4058 116 140

4058 6F

4058 236

4058 6F

4058 87

4060 E9

4064 78

4066 BC26 E40

4067 1360 E40

4071 360 E40

4
                                                                                                                                                INX
JNZ
DCR
                                                                                                                                                                                                                                                                                                                     MATCH FAILED - NEXT TASK
DEC. # TO COMPARE
DO TILL DONE
                                                                                                                                                                                                   WXTTSK
                                                                                                                                                                                                   В
                                                                                                                                                  JNZ
                                                                                                                                                                                                   CMPNXT
                                                                                                                                                                                                  A,M
                                                                                                                                                  MOV
                                                                                                                                                  INX
                                                                                                                                                 MOV
MOV
LXI
                                                                                                                                                                                                  H,M
                                                                                                                                                                                                 L,A
D,RETPNT
D
                                                                                                                                                                                                                                                                                                                      GET RETURN POINT
STICK IT ON THE STACK
OFF TO BOGUS LAND
LOOK AT THIS TASK
STOP STATIC TASK
                                                                                                                                                                                                                                                                                                      ; ;
                                                                                                                                                 PUSH
PCHL
                                                                                               RETPNT:
                                                                                                                                                                                                  TSKPTR
H
                                                                                                                                                  DCX
                                                                                                                                                                                                  Ä,M
                                                                                                                                                MOV
                                                                                                                                                 ORA
                                                                                                                                                                                                   A
                                                                                                                                                 JNZ
DCX
                                                                                                                                                                                                  RETPT2
H
                                                                                                                                                                                                 M,0
                                                                                                                                                 IVM
                                                                                                                                                  INX
                                                                                                                                                                                                  Ĥ
                                                                                               RETPT2:
RETPT3:
                                                                                                                                                                                                  Ê,4
                                                                                                                                               IVI
                                                                                                                                                                                                                                                                                                       ;; CLEAR TEMP TIME SLOT
                                                                                                                                                INX
                                                                                                                                                MVI
DCR
                                                                                                                                                                                                 й,о
                                                                                                                                                                                                  E
                                                                                                                                                  JNZ
                                                                                                                                                                                                  RETPT3
 4077
407A
407B
407E
4081
                              3AEE40
3D
CA8E40
32EE40
2AEF40
                                                                                               NXTTSK:
                                                                                                                                               LDA
                                                                                                                                                                                                  NUMBER
                                                                                                                                                                                                                                                                                                       ;; SEE HOW MANY YET TO DO
                                                                                                                                                                                                A
ENDJOB
NUMBER
TSKPTR
D, 12
                                                                                                                                                DCR
JZ
STA
                                                                                                                                                                                                                                                                                                       ;; QUIT IF DONE
                                                                                                                                                LHLD
LXI
 4084
4087
4088
408B
                              110C00
19
22EF40
C31940
                                                                                                                                                                                                 D, 12
TSKPTR
DOTASK
                                                                                                                                                 DAD
                                                                                                                                                 SHLD
                                                                                                                                                 Jľ'nĎ
408E E1
408F D1
4090 C1
4091 F1
4092 FB
4093 C9
                                                                                                                                              POP
POP
POP
                                                                                               ENDJOB:
                                                                                                                                                                                                  Н
                                                                                                                                                                                                                                                                                                     ;;FINISH
                                                                                                                                                                                                  D
                                                                                                                                                                                                  B
                                                                                                                                                POP
EI
RET
                                                                                                                                                                                                  PSW
                                                                                                                THE FOLLOWING ROUTINES PROVIDE FOR CONTROL OF THE EXECUTIVE.
4094 C5
4095 6F
4097 6F
4098 29
4099 E5
409B 29
409B 01F340
409E 01F340
409E 09
                                                                                               ČÉTADR: PUSH
                                                                                                                                                                                                  В
                                                                                                                                                                                                H,O
L,A
                                                                                                                                               ĬVM
VOM
                                                                                                                                                 DAD
                                                                                                                                                 DAD
                                                                                                                                                                                                 HHHB
                                                                                                                                                PUSH
DAD
                                                                                                                                                POP
                                                                                                                                                DAD
LXI
                                                                                                                                                                                                  B
                                                                                                                                                                                                          ,TSKTBL+2
                                                                                                                                                                                                  B
                                                                                                                                                 DAD
```

```
40A2 C1
40A3 C9
                                                     POP
RET
                                                                       В
                                  :: STOP TASK IN A REG.
KILTSK: CALL GETADR
40A4 CD9440
40A7 3600
40A9 C9
                                                                       GETADR
                                                     IVM
                                                                       M,O
                                                     RET
                                   ;; START TASK IN A REG.
LIVTSK: CALL GETADR
40AA CD9440
40AD 3601
40AF C9
                                                     MVI
                                                                       M,1
                                                     RET
                                   ;; SET ALL TASKS TO A (RUN/STOP)
SETALL: LXI H, TSKTBL
40B0 21F140
40B3 E601
40B5 46
40B6 04
40B7 23
40B8 23
40B9 110C00
40BC 77
40BD 19
40BE 05
40BF C2BC40
40C2 C9
                                                     ANI
                                                                        B,M
                                                     VOt4
                                                     INR
                                                     INX
                                                                        Η
                                                     INX
LXI
                                                                        H
                                                                        D, 12
                                   SETAL2: MOV
                                                                        M,A
                                                     DAD
DCR
JNZ
RET
                                                                        D
                                                                        Ē
                                                                        SETAL2
                                   ;; SET A TASK TO A (RUN/STOP)
SETTSK: CALL GETADR
MVI M,O
40C3 CD9440

40C6 3600

40C8 23

40C9 70

40CA 010A00

40CD 09

40CE 3E03

40D1 C1

40D2 70

40D3 2B

40D4 71

40D5 2B

40D6 3D

40D6 3D

40D6 3D

40DA EB

40DA EB
                                                                        M,0
                                                     INX
HOV
LXI
DAD
                                                                        Н
                                                                       M,B
B,10
                                                     POP
                                                                        Ď
                                                                        Ă,3
                                                     IĬŀĺ
                                   SETTS2:
                                                     POP
                                                     VOM
                                                                        M,B
                                                                        H,C
                                                      DCX
                                                     MOV
DCX
DCR
JNZ
XCHG
                                                                        Н
                                                                        Ā
SETTS2
                                   PCHL
:: ENABLE SOFTWARE CONTROL
ONJOB: LXI H,TSKTBL+1
MVI 11,1
40DC 21F240
40DF 3601
40E1 C9
                                   RET
;; DISABLE SOFTWARE CONTROL
OFFJOB: LXI H,TSKTBL+1
NVI M,0
40E2 21F240
40E5 3600
40E7 C9
                                                     NVI
RET
                                         SET MASTER ENABLE/DISABLE TO A
40E8 E601
40EA 32F240
                                   RUNSTP: ANI
                                                                        TSKTBL+1
```

```
      40ED C9
      RET

      40EE
      NUMBER: DS
      1

      40EF
      TSKPTR: DS
      2

      40F1
      TSKTBL: DS
      256

      41F1 =
      LASTLOC EQU
      $
```

THEORY OF OPERATION

The S-100 Clock communicates to the central processor through a block of 16 I/O ports. The address of this block is determined by the setting of SI switches 2 through 5. These select the high order 4 bits of the eight-bit I/O address for each of the 16 ports.

The block address of each port, 0 through 15, corresponds to the address of a location in the 16X4 RAM at U29. Locations 0 through 14 of this RAM each hold one of the 4-bit BCD digits of the current time. The contents are as follows:

Loc	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0-9 0-9 0-9 0-9 0-5 0-9 0-5 0-9 0-3 0-2 0-9 0-9 0-9	Hundreds of microseconds. Milliseconds. Tens of milliseconds. Hundreds of milliseconds. Seconds. Tens of seconds. Minutes. Tens of minutes. if Loc 9=0 or Loc 9=1 if Loc 9=2, Hours. Tens of hours. Days. Tens of days. Hundreds of days. Thousands of days. Ten-thousands of days. Used for interrupts.

Thus, an input operation to block address 4 will return the current number of seconds in the lower four bits of A. The information in U29 is updated by the clock every 100 microseconds. A full clock read requires 15 input operations. Since it is possible for a clock tick (update) to occur between two of the input operations, a flag is included with the data to resolve any ambiguity. If the most significant bit of A comes back set after a clock input, then the clock has not ticked since the previous input.

The clock is set by output operations to the addresses of the time digits in the block of ports. S1 (Switch 1) must be closed to write enable the clock. Outputs to block addresses 0-14 cause the lower 4 bits of the AC to be written to the corresponding digit address in U29 and STOP THE CLOCK. The clock remains stopped until the processor reads any of the time digits. The clock will then tick 100 microseconds later and continue to update every 100 microseconds.

IMPLEMENTATION

The S-100 Clock operates on the principle of character processing. Every 100 microseconds the characters that represent the time are fetched from memory, processed, and returned. When the processing has ended, the time has been advanced by 100 microseconds. As in computer programming, the processing is no more than following a series of rules and making some simple decisions. The rules are as follows:

1. Start with Loc O. (Hundreds of microseconds).

Fetch the digit and add 1 to it.

 If the add carries, replace the digit with 0 and go to Step 2, else replace the digit with the sum and stop.

4. Carry is defined to be the number 10 or the number 6 if the address is either 5 or 7, (tens of seconds or tens of minutes) or the number 4 if the address is 8 (hours) and Loc 9 contains the number 2 (20 hours), or the number 3 if the address is 9 (tens of hours).

The time digits are processed in the 4-bit wide digital loop that begins at the output of U29, proceeds through the inverters in U28, is incremented at U18, latched or cleared at U21 and finally returned to U29. The inverting step is needed because the 74c89 at U29 gives an inverted output.

The address used in the processing is generated by the 4-bit counter U15. This address starts at 0 (hundreds of microseconds) and is incremented after each digit is fetched from U29. The address is transferred from U15 to U14 at the start of each digit cycle where it is latched and presented to the address lines of U29.

The carry logic is implemented with U19, U13, some gates in U1, U2, U11, U28 and a flip-flop in U20. U19 decodes the result of the increment at U18 and outputs a high level on Pin 5 if the result is a 3, Pin 2 if the result is 4, Pin 15 if the result is 6 and Pin 6 if the result is 10. U13 is used to determine which time digit is being incremented by decoding the address used at U29. The flip-flop at Pin 1 of U20 is set whenever a 2 is loaded into tens of hours.

Thus, if tens of seconds or tens of mintues is incremented from 5 to 6, Pin 3 of U12 will be high and Pin 15 of U19 will be high causing a low on Pin 4 of U2 and therefore a high on Pin 10 of U1 which is the carry line. If hours is incremented from 3 to 4 and tens of hours has a 2 in it, then Pin 1 of U20 will be high, Pin 4 of U19 will be high, and Pin 10 of U12 will be high. This causes Pin 9 of U1 to go low and again setting carry. If tens of hours is incremented from 2 to 3, Pin 11 of U3 will be low and Pin 12 of U28 will be low, causing a high on Pin 10 of U11 and therefore a low on Pin 11 of U11 and thereby a high on Pin 10 of U1, carry. If any digit is incremented from 9 to 10, pin 6 of U19 goes high and causes Pin 11 of U11 low, and again Pin 10 of U1 high, thus carry.

The clock timing is provided by the crystal oscillator with output at Pin 10 of U6. This is a 1 MHz signal which is always present during clock operation. The 1 MHz is divided by 100 in U3 and the outputs of U3 are added to generate a 1 microsecond pulse every 100 microseconds. This pulse initiates the incrementing of the time and is generated as long as Pins 7 and 15 of U3 remain low. These pins are pulled high by the SR flip-flop at Pin 3 of U2 if the processor does an output to a time digit and the clock is write enabled by S1-1. In going high, Pin 3 of U2 stops the clock from incrementing and clears U3 so that the next 100 microsecond period will start when Pin 3 goes low at the next intput to the processor of a time digit.

The 5-volt supply for the CMOS portion of the clock is regulated by the circuit at U32. This configuration uses the very low power Zener Effect of Q2, together with the micro-power op amp LM4250, to control the current through Q1. When the bus is powered, the clock uses the +16 volts as the input to the regulator. When the bus is powered down the regulator is switched to the on-board 9-volt battery. The S-100 Clock draws less than 2 Ma from its battery when the computer is powered down. If a rechargeable battery is used, R6 can provide charging current when the computer is on. If the clock is to be operated for very long times without bus power, an external 12-volt battery pack is recommended.

TROUBLE SHOOTING

The clock is one of the only boards that can be almost completely tested without the rest of the computer. The most useful tool in checkout is an oscilloscope. A frequency counter is also useful, but on essential.

The first step is to connect the 9-volt battery. The clock need not be connected to the S-100 bus. Measurements should be made to see that the supply voltage to the CMOS IC's is approximately 5 volts. Over-voltage cannot be worse than 9-volts won't hurt anything. If the voltage is too high, check into the voltage regulator circuit at U32. If the voltage is shorted to ground however, remove all the CMOS parts and check again. If there is still no +5, trace the regulator circuit.

Once the 5 volts is OK to the CMOS parts, check the 1 MHz signal at Pin 10 of U6. If no signal, then remove all the CMOS logic except U6. If still no signal, then either U6 is bad or the crystal is bad.

After verifying the 1 MHz, check the state of Pin 3 of U2. If it is low, the clock should be running. If it is high, the clock has come up stopped. If it is high, poke it with a grounded wire and it should go low and start the clock. Once the clock is started, 1 microsecond pulses will be generated at Pin 3 of U9 every 100 microseconds.

The big picture is at Pin 12 of Ul5. This line is Phase 2 used in the digit increment process. The scope should show a 2 microsecond pulse every 100 microseconds. This is the primary signal but after 2 microseconds another pulse should be visible, but fainter. This is also true for the third and fourth pulse positions across the face of the scope. At the fifth position a pulse will flash every second and next to it one every 10 seconds, and so on.

If this picture is correct, then the incrementing and most all of the functions of the clock are functioning and it is time to put the board in the computer and run the testing software.

If a good frequency counter is available, the 1 MHz oscillator can be tuned to give good long-term accuracy. It is also possible to tune the oscillator by attaching a wire to Pin 10 of U6 and placing the wire close to a short-wave radio tuned to WWV at 5 MHz. The fifth harmonic of the clock will beat against WWV and allow very precise setting by tuning for the lowest beat note.

PARTS LIST

R1 R2 R3, R7 R4, R18 R5 R6, R11-16 R20-R22 R8, R17, R23 R10 R19	240 K 330 K 1 M 1 K 51 K 10 K 100 K 6.2 K 4.7 M 6.8 K	U1	4023 4011 4518 74LS136 74C85 4069 4013 4001 74LS174 74C42 4076 4520 74LS74
BT1 CR1,CR3 CR2 Q1 Q2 S1 VR1 Y1 J1 C6-C10, C14-C21 C2, C3 C4, C5, C1 C11 C12 C13	9V Battery IN4148 IN34A 2N2907A RCA 2N3866 8 Pos. Dip Switch 7805 1.0000 MHz Crystal Adapter Jack .l µF/28V 10 µF/25V 15 µF/15V 18 pF 3.5-20 pF 36 pF	U17 U18 U19 U23 U24 U25 U26 U27, U30 U29 U31 U32 U33 U34, U35	74LS74 74LS10 4008 4028 74LS04 7417 74LS00 74367 4503 74C89 74LS20 LM4250 74LS00 74LS367
(1) P.C. Card (1) Manual (1) 8-Pin Socket (16) 16-Pin Sockets (18) 14-Pin Sockets			

WARRANTY

Your factory-built 100,000 Day Clock board is warranted against defects in materials and workmanship for a period of six (6) months from date of delivery. We will repair or replace products that prove to be defective during the warranty period, provided they are returned to Mountain Hardware. No other warranty is expressed or implied. We are not liable for consequential damages. We reserve the right to refuse to repair any product that in our opinion has been subjected to abnormal electrical or mechanical abuse. Products out-of-warranty are subject to a minimal service fee.

Please feel free to contact us if you have any questions or problems.

Mountain Hardware

Located in the Santa Cruz Mountains of Northern
California, Mountain Hardware, Inc. is a computer peripheral
manufacturer dedicated to the production of use-oriented
high technology products for the microcomputer. On-going
research and development projects are geared to the continual
supply of unique, innovative products that are easy to use
and highly complementary in a broad variety of applications.

300 Harvey West Boulevard Santa Cruz, CA 95060 (408) 429-8600

100,000 DAY CLOCK ADDENDUM 6 JUNE, 1980

This is an addendum to the 100,000 Day Clock Manual. This addendum contains information about changes made to the circuit. The circuit has been changed so that it will work with most \$100 hus systems. However, there is still a great variety in \$100 systems. If you are having problems with your 100,000 Day Clock, then read this addendum carefully. If your problem persists after following the steps below, then feel free to contact Mountain Hardware.

If you are having a problem, the first thing to check is the XRDY and PRDY lines on the \$100 bus. The 100,000 Day Clock uses the XRDY line (pin 3 on the \$100 bus) to synchronize the Clock with the \$100 bus. Some \$100 systems use the PRDY line (pin 72 on the \$100 bus) and not the XRDY line. You must find out which line your computer uses for the ready function. If your system uses the PRDY line, you must cut the trace to pin 3 and jumper that line to pin 72 on the card edge connector. Newer boards have a jumper area on the board for the XRDY and PRDY lines. The 100,000 Day Clock is shipped from the factory with the XRDY line in use.

The next thing to check is that the board is properly addressed. Carefully set the address switches and make sure that they are all the way up or down. Make sure they are set for the addresses that your program is using.

Changes have been made to the circuit. Refer to the schematic in he back of the manual. Resistors R11, R12, R13, R14 and R15 have been changed from 10K ohms to 2K ohms. Additionally, a 470 ohm resistor has been inserted in series with the signal coming from Ul7, pin 6 and going to both U25, pin 2 and U23 pin 9. If you cannot get the Clock to return a good time value on a 4Mhz system, you might try jumpering around the 470 ohm resistor on the back of the board. Another change to the circuit is 270 pico-farad capacitor has been added between UL6, pin 11 and U25, pin 8. The integrated circuit U17 has been changed from a 741.510 to a 74L10. Again, if you have trouble with a 4Mhz system, you might try replacing the 74L10 at location (1)7 with a 74L510. Also try removing the 270pf capacitor. Any one of these modifications (i.e., jumping the 470 ohm, the 74L10, and the 270 pf capacitor) or a combination of some or all of the modifications may solve the problem. We have included these parts installed on the board because of the wide variety of 5100 systems available.

If you are going to use the interrupt feature of the 100,000 Day Clock, you must set the RO, RI, and R2 switches to the restart address, assuming you use 8080 interrupts. The 100,000 Day Clock will place the contents of those switches on the bus. The S100 bus is responsible for making the other five hits of the data bus high logic levels.

All of the changes have been made so that the TBO,000 Day Clock will work on most of the many varieties of \$100 has systems on the market.

Dear Customer:

Thank you for your interest in Mountain Computer peripherals. Please take note of the additional pages with your manual. These pages include corrections for pages 3, 7, and 9 of the current manual plus a two-page addendum. We recommend that you keep these with your manual.

Thank You, MOUNTAIN HARDWARE, INC.

-			
		•	

SETTING THE FREQUENCY

Your 100,000 Day Clock has been factory assembled, burned in and tested. The 1.0000 MHz time base has been accurately set to within . '017. Vibrations or extreme temperatures can cause slight changes to the time base and may produce noticeable errors. If these errors are noticed, or if you desire to set this frequency more precisely for your environment, an accurate frequency counter and a small non-metallic screwdiffer are required

Connect the frequency counter with the ground lead to the screw on the regulator and the positive lead to Pin 10 of U6. Adjust 612 for a frequency as close to 1.000000 MHz as possible. Be sure the crock is at the same operating temperature as its normal environment.

SETTING THE PORT ADDRESS -

The clock board occupies 16 port addresses on the S-100 system bus. Changing the switches labelled A4, A5, A6 and A7 can change the clock to respond to different port addresses. Table 1 shows the relationships between switch positions and addresses.

PORT	ADDRESSES		SWITCH P	MOLTIZO	
DEC1MAL	IIEX	<u>A4</u>	<u>45</u>	<u>A6</u>	A7
0 - 15 16 - 31 32 - 47 48 - 63 64 - 79 80 - 95 96 -111 112 -127 128 -143 144 -159 160 -175 176 -191 192 -207 208 -223 224 -239	0 - F 10 - 1F 20 - 2F 30 - 3F 40 - 4F 50 - 5F 60 - 6F 70 - 7C 80 - 8F 90 - 9F A0 - AF B0 - BF CO - CF DO - DF EO - EF			0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
240 -255	FO - FF	1	1	1	1

TABLE 1

For port selection purposes, a 1 (end) leans the switch is closed (on). A 0 (zero) means the switch is open (cr).

Address your clock to a set of ports that are not presently used by your other peripherals. If possible, we recommend that you use ports 32-47 (20-20 HEX) to standardize with our software.

RESTART ADDRESS		RESTART SWITCHES			
DECIMAL	<u>HE X</u>	<u>RO</u>	· <u>R1</u>	<u>R2</u>	
0 8 16 24 32 40 48 56	0000 0008 0010 0018 0020 0028 0030 0038	0 1 0 1 0 1 0	0 0 1 1 0 0 0	0 0 0 0 1 1 1	1

TABLE 4

Software can then be placed at the re-start location to service the interrupt.

1 to 1

The other type of interrupt on the 100,000 Day Clock board is a Vectored Interrupt. This is available for users of a vectored interrupt controller. To use this feature, the trace between I and PINT in the lower-left corner of the clock should be cut and a jumper placed between I and one of the VI pins labelled VIO-VI7 and also in the lower-left corner of the clock board. For more information on the vectored interrupt see the details with your Vectored Interrupt board.

With all interrupts care must be taken to avoid conflicts between peripherals requesting an interrupt.

READING THE CLOCK - PRINTING THE TIME

Since the clock stores the time on-board in the form of BCD digits, displaying the time is very easy. The lower 4 bits of each clock digit hold the actual information. Here is a basic program which prints the time.

```
C=32: REM CLOCK'S LOWEST PORT ADDRESS
10
      FOR I = 9 TO 4 STEP - 1
20
      D=INP(C+I): REM GET A DIGIT
30
35
      D=D - INT (D/16)* 16: REM REMOVE TOP 4 BITS
      PRINT D;: REM PRINT DIGIT
      IF I=8 OR I=6 THEN PRINT ":";
50
60
      NEXT I
70
      PRINT
80
      END
```

CALENDAR ROUTINES

This software package was developed to enable you to translate the day information on the clock board (0 - 99,999 days) to date information in the form of month, day, year, day of week.

Using this software is simple:

- Set location "CLKPRT" (4400) to the lowest port address of your clock board.
- 2. Call "READ" as a machine language subroutine. (Location 4200).
- 3. Read the returned information from RAM storage area.

```
MONTH is the month 1 = JAN, 2 = FEB...) (Location 4402). DATE is the day (1-31) (Location 4403). YEAR is the year (1978...) (Locations 4404, 4405 - Low, High). is the day of the week (0 = SAT, 1 = SUN...) (Location 4401).
```

The above addresses are given in hex and refer to the source listing of the calendar routines.

The calendar routine assumes that the DAYS digits of your work board have been set to the number of days since December 31, 1977. That is, January 1, 1978 is DAY 00001.

That is all there is to it.

Here is a BASIC program to perform this task:

```
10 L = 17408: REM START OF RAM STORAGE FOR CAL ROUTINES
20 POKE L, 32: REM CLOCK AT 32 (LOWEST PORT # ON CLOCK)
30 Y = USR (16896): REM CALL ROUTINE
40 PRINT PEEK (L+2); "/", PEEK (L+3); "/";
50 PRINT PEEK (L+4) + 256*PEEK (L+5)
60 END
```

.This prints the date as NM/DD/YYYY.